Answer:
make it go faster
Explanation:
because of the arrow danmaicts of the force the wind give more speed
The electrical force acting on a charge q immersed in an electric field is equal to

where
q is the charge
E is the strength of the electric field
In our problem, the charge is q=2 C, and the force experienced by it is
F=60 N
so we can re-arrange the previous formula to find the intensity of the electric field at the point where the charge is located:
Answer:
The pressure is constant, and it is P = 150kpa.
the specific volumes are:
initial = 0.062 m^3/kg
final = 0.027 m^3/kg.
Then, the specific work can be written as:

The fact that the work is negative, means that we need to apply work to the air in order to compress it.
Now, to write it in more common units we have that:
1 kPa*m^3 = 1000J.
-5.25 kPa*m^3/kg = -5250 J/kg.
Answer:
2Ω
Explanation:
If a 18Ω resistance is cut into three equal parts each of the resistance will be 18Ω/3 = 6Ω
Equivalent ratio in parallel is expressed as:
1/R = 1/6 + 1/6 + 1/6
1/R = 3/6
Cross multiply
3R = 6
R = 6/3
R = 2Ω
Hence the required equivalent resistance is 2Ω
Answer:
Sarah is right
Explanation:
This is an exercise that differentiates between scalars and vectors.
A scalar is a number, instead a vector is a number that represents the module in addition to direction and sense.
In this case, the distance (scalar) traveled is a number, which is why it is worth 1500m, but the displacement is a vector and since the point where it leaves is the same point where the vector's modulus arrives is zero, so the DISPLACEMENT VECTOR is zero
consequently Sarah is right