When 'The big bang' happened lots of large pieces of molten rock was flying around the solar system. As the rocks crashed together they got bigger and as the got bigger they attracted more rocks. Some scientists think that a large piece of molten rock hit the still developing Earth and created the Moon. This impact also caused the Earths angled spin. The Moon got trapped in Earth's orbit and has stayed ever since. Small astroids have hit the Moon causing craters. The Earth doesn't get hit as much because of our thicker atmosphere. Hope this helps!
Correct answer is A
Voltaic Piles
Answer:
W = 112.58 N-unit
Explanation:
Given:
- Force F = 10 N
- Angle Q of force with x axis: 30 degrees
- distance to be moved d = 13 units along + x axis
Find:
Work Done by the force F:
Solution:
The work by force in positive x direction can only be done if the both the direction of distance traveled and direction of force are parallel vectors. Hence we compute the component of Force F in x direction F_x:
F_x = F*cos(Q)
F_x = 10*cos(30)
F_x = 8.66 N
Hence,
Work Done by force
W = F_x * d
W = 8.66 * 13
W = 112.58 N-unit
Use the formula t = d/v
t = 15 km/ 37 km/h
t = 0.4054
t = 0.41 h (rounded)
Answer:
The maximum value of θ that will cause the block to remain stationary on the inclined surface is 21.8°
Explanation:
Given;
coefficient of static friction, μ = 0.4
for the block to remain stationary on the inclined plane, force pushing the block upward must be equal to the force acting downwards.
μR = mgsinθ
μmgcosθ = mgsinθ
μcosθ = sinθ
μ = sinθ/cosθ
μ = tanθ
θ = tan⁻¹(0.4) = 21.8°
Therefore, the maximum value of θ that will cause the block to remain stationary on the inclined surface is 21.8°