Using q=1.60217662 E-19 C we get:

Then using 9.10938356E-31 kg as the mass, we get
Answer: T = 472.71 N
Explanation: The wire vibrates thus making sound waves in the tube.
The frequency of sound wave on the string equals frequency of sound wave in the tube.
L= Length of wire = 26cm = 0.26m
u=linear density of wire = 20g/m = 0.02kg/m
Length of open close tube = 86cm = 0.86m
Sound waves in the tube are generated at the second vibrational mode, hence the relationship between the length of air and and wavelength is given as
L = 3λ/4
0.86 = 3λ/4
3λ = 4 * 0.86
3λ = 3.44
λ = 3.44/3 = 1.15m.
Speed of sound in the tube = 340 m/s
Hence to get frequency of sound, we use the formulae below.
v = fλ
340 = f * 1.15
f = 340/ 1.15
f = 295.65Hz.
f = 295.65 = frequency of sound wave in pipe = frequency of sound wave in string.
The string vibrated at it fundamental frequency hence the relationship the length of string and wavelength is given as
L = λ/2
0.26 = λ/2
λ = 0.52m
The speed of sound in string is given as v = fλ
Where λ = 0.52m f = 295.65 Hz
v = 295.65 * 0.52
v = 153.738 m/s.
The velocity of sound in the string is related to tension, linear density and tension is given below as
v = √(T/u)
153.738 = √T/ 0.02
By squaring both sides
153.738² = T / 0.02
T = 153.738² * 0.02
T = 23,635.372 * 0.02
T= 472.71 N
Answer:
Rigorous exercise
Explanation:
For your heart rate is been around 100 bpm you should be doing a rigorous exercise . but if ain't doing any rigorous exercise and your heart rate is constantly above 100 bpm you should consult your doctor.
An average heart is between 60 bpm to 100 bpm.
change of an object relative to the position of another object.