Answer:
See explanation
Explanation:
A double replacement reaction is a reaction where the atoms in the molecules replace each other to form two new molecules. However, if the products of the solution are soluble, then they could combine with the solution, and form a different set of products than expected.
Hope this helps!
Answer:
THE MOLAR MASS OF THE UNKNOWN MOLECULAR SUBSTANCE IS 200 G/MOL.
Explanation:
Mass of the unknown substance = 0.50 g
Freezing point of the solution = 3.9 °C
Freezing point of pure benzene = 5.5 °C
Freezing point dissociation constant Kf = 5.12°C/m
First, calculate the temperature difference between the freezing point of pure benzene and the final solution freezing point.
Change in temperature = 5.5 -3.9 = 1.6 °C
Next is to calculate the number of moles or molarity of the compound that dissolved.
Using the formula:
Δt = i Kf m
Assume i = 1
So,
1.6 °C = 1 * 5.12 * x/ 0.005 kg of benzene
x = 1.6 * 0.008 / 5.12
x = 0.0128 / 5.12
x = 0.0025 moles.
Next is to calculate the molar mass using the formula, molarity = mass / molar mass
Molar mass = mass / molarity
Molar mass = 0.50 g /0.0025
Molar mass = 200 g/mol
Hence, the molar mass of the unknown compound is 200 g/mol
The mass of sodium sulfite that was used will be 1,890 grams.
<h3>Stoichiometric problems</h3>
First, the equation of the reaction:

The mole ratio of SO2 produced and sodium sulfite that reacted is 1:1.
Mole of 960 grams SO2 = 960/64 = 15 moles
Equivalent mole of sodium sulfite that reacted = 15 moles
Mass of 15 moles sodium sulfite = 15 x 126 = 1,890 grams
More on stoichiometric problems can be found here: brainly.com/question/14465605
#SPJ1
Answer:
390.85mL
Explanation:
Step 1:
Data obtained from the question.
Initial pressure (P1) = 780 torr
Initial volume (V1) = 400mL
Initial temperature (T1) = 40°C = 40°C + 273 = 313K
Final temperature (T2) = 25°C = 25°C + 273 = 298K
Final pressure (P2) = 1 atm = 760torr
Final volume (V2) =?
Step 2:
Determination of the final volume i.e the volume of the gas outside Matt's body.
The volume of the gas outside Matt's body can be obtained by using the general gas equation as shown below:
P1V1/T1 = P2V2/T2
780 x 400/313 = 760 x V2 /298
Cross multiply to express in linear form
313 x 760 x V2 = 780 x 400 x 298
Divide both side by 313 x 760
V2 = (780 x 400 x 298) /(313 x 760)
V2 = 390.85mL
Therefore, the volume of the gas outside Matt's body is 390.85mL
Answer:
C: Carbon
Explanation:
Hydrogen, oxygen, and carbon are the most important elements in organic compounds.