Answer:
c
Step-by-step explanation:
i could be wrong sorry in advance if it is i am not 100 percent sure
Answer:
4062N
Step-by-step explanation:
Using Newton’s Second Law;
F = ma
F = (1354)(3)
F = 4062N
Hope this helps! :D
Jdhshdhshdhhdhdidhhsbsshhs 80
Answer:
67.5 units²
Step-by-step explanation:
We can break this problem down in two parts: The upper triangle and the lower trapezoid.
The upper triangle:
Use the formula
to compute the area of the triangle. Base = 10 and Height = 7.
1/2 (10)(7)
1/2 (70)
=35 units².
The lower trapezoid:
Use the formula
to compute the area of the trapezoid. Base 1 = 10, Base 2 = 3 and Height = 5.
1/2 (10 + 3)(5)
1/2 (13)(5)
1/2 (65)
=32.5 units²
So, add the two areas of each shape:
35 + 32.5 = 67.5 units².
Step-by-step explanation:
<h3>
Need to FinD :</h3>
- We have to find the value of (sinθ + cosθ)/(sinθ - cosθ), when 13 cosθ - 5 = 0.
![\red{\frak{Given}} \begin{cases} & \sf {13\ cos \theta\ -\ 5\ =\ 0\: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \big\lgroup Can\ also\ be\ written\ as \big\rgroup} \\ & \sf {cos \theta\ =\ {\footnotesize{\dfrac{5}{13}}}} \end{cases}](https://tex.z-dn.net/?f=%20%5Cred%7B%5Cfrak%7BGiven%7D%7D%20%5Cbegin%7Bcases%7D%20%26%20%5Csf%20%7B13%5C%20cos%20%5Ctheta%5C%20-%5C%205%5C%20%3D%5C%200%5C%3A%20%5C%3A%20%5C%3A%20%5C%3A%20%5C%3A%20%5C%3A%20%5C%3A%20%5C%3A%20%5C%3A%20%5C%3A%20%5C%3A%20%5C%3A%20%5C%3A%20%5C%3A%20%5C%3A%20%5C%3A%20%5C%3A%20%5C%3A%20%5C%3A%20%5C%3A%20%5C%3A%20%5C%3A%20%5C%3A%20%5C%3A%20%5Cbig%5Clgroup%20Can%5C%20also%5C%20be%5C%20written%5C%20as%20%5Cbig%5Crgroup%7D%20%5C%5C%20%26%20%5Csf%20%7Bcos%20%5Ctheta%5C%20%3D%5C%20%7B%5Cfootnotesize%7B%5Cdfrac%7B5%7D%7B13%7D%7D%7D%7D%20%5Cend%7Bcases%7D)
Here, we're asked to find out the value of (sinθ + cosθ)/(sinθ - cosθ), when 13 cosθ - 5 = 0. In order to find the solution we're gonna use trigonometric ratios to find the value of sinθ and cosθ. Let us consider, a right angled triangle, say PQR.
Where,
- PQ = Opposite side
- QR = Adjacent side
- RP = Hypotenuse
- ∠Q = 90°
- ∠C = θ
As we know that, 13 cosθ - 5 = 0 which is stated in the question. So, it can also be written as cosθ = 5/13. As per the cosine ratio, we know that,
![\rightarrow {\underline{\boxed{\red{\sf{cos \theta\ =\ \dfrac{Adjacent\ side}{Hypotenuse}}}}}}](https://tex.z-dn.net/?f=%20%5Crightarrow%20%7B%5Cunderline%7B%5Cboxed%7B%5Cred%7B%5Csf%7Bcos%20%5Ctheta%5C%20%3D%5C%20%5Cdfrac%7BAdjacent%5C%20side%7D%7BHypotenuse%7D%7D%7D%7D%7D%7D%20)
Since, we know that,
- cosθ = 5/13
- QR (Adjacent side) = 5
- RP (Hypotenuse) = 13
So, we will find the PQ (Opposite side) in order to estimate the value of sinθ. So, by using the Pythagoras Theorem, we will find the PQ.
Therefore,
![\red \bigstar {\underline{\underline{\pmb{\sf{According\ to\ Question:-}}}}}](https://tex.z-dn.net/?f=%20%5Cred%20%5Cbigstar%20%7B%5Cunderline%7B%5Cunderline%7B%5Cpmb%7B%5Csf%7BAccording%5C%20to%5C%20Question%3A-%7D%7D%7D%7D%7D%20)
![\rule{200}{3}](https://tex.z-dn.net/?f=%5Crule%7B200%7D%7B3%7D)
![\sf \dashrightarrow {(PQ)^2\ +\ (QR)^2\ =\ (RP)^2} \\ \\ \\ \sf \dashrightarrow {(PQ)^2\ +\ (5)^2\ =\ (13)^2} \\ \\ \\ \sf \dashrightarrow {(PQ)^2\ +\ 25\ =\ 169} \\ \\ \\ \sf \dashrightarrow {(PQ)^2\ =\ 169\ -\ 25} \\ \\ \\ \sf \dashrightarrow {(PQ)^2\ =\ 144} \\ \\ \\ \sf \dashrightarrow {PQ\ =\ \sqrt{144}} \\ \\ \\ \dashrightarrow {\underbrace{\boxed{\pink{\frak{PQ\ (Opposite\ side)\ =\ 12}}}}_{\sf \blue{\tiny{Required\ value}}}}](https://tex.z-dn.net/?f=%20%5Csf%20%5Cdashrightarrow%20%7B%28PQ%29%5E2%5C%20%2B%5C%20%28QR%29%5E2%5C%20%3D%5C%20%28RP%29%5E2%7D%20%5C%5C%20%5C%5C%20%5C%5C%20%5Csf%20%5Cdashrightarrow%20%7B%28PQ%29%5E2%5C%20%2B%5C%20%285%29%5E2%5C%20%3D%5C%20%2813%29%5E2%7D%20%5C%5C%20%5C%5C%20%5C%5C%20%5Csf%20%5Cdashrightarrow%20%7B%28PQ%29%5E2%5C%20%2B%5C%2025%5C%20%3D%5C%20169%7D%20%5C%5C%20%5C%5C%20%5C%5C%20%5Csf%20%5Cdashrightarrow%20%7B%28PQ%29%5E2%5C%20%3D%5C%20169%5C%20-%5C%2025%7D%20%5C%5C%20%5C%5C%20%5C%5C%20%5Csf%20%5Cdashrightarrow%20%7B%28PQ%29%5E2%5C%20%3D%5C%20144%7D%20%5C%5C%20%5C%5C%20%5C%5C%20%5Csf%20%5Cdashrightarrow%20%7BPQ%5C%20%3D%5C%20%5Csqrt%7B144%7D%7D%20%5C%5C%20%5C%5C%20%5C%5C%20%5Cdashrightarrow%20%7B%5Cunderbrace%7B%5Cboxed%7B%5Cpink%7B%5Cfrak%7BPQ%5C%20%28Opposite%5C%20side%29%5C%20%3D%5C%2012%7D%7D%7D%7D_%7B%5Csf%20%5Cblue%7B%5Ctiny%7BRequired%5C%20value%7D%7D%7D%7D%20)
∴ Hence, the value of PQ (Opposite side) is 12. Now, in order to determine it's value, we will use the sine ratio.
![\rightarrow {\underline{\boxed{\red{\sf{sin \theta\ =\ \dfrac{Opposite\ side}{Hypotenuse}}}}}}](https://tex.z-dn.net/?f=%20%5Crightarrow%20%7B%5Cunderline%7B%5Cboxed%7B%5Cred%7B%5Csf%7Bsin%20%5Ctheta%5C%20%3D%5C%20%5Cdfrac%7BOpposite%5C%20side%7D%7BHypotenuse%7D%7D%7D%7D%7D%7D%20)
Where,
- Opposite side = 12
- Hypotenuse = 13
Therefore,
![\sf \rightarrow {sin \theta\ =\ \dfrac{12}{13}}](https://tex.z-dn.net/?f=%20%5Csf%20%5Crightarrow%20%7Bsin%20%5Ctheta%5C%20%3D%5C%20%5Cdfrac%7B12%7D%7B13%7D%7D%20)
Now, we have the values of sinθ and cosθ, that are 12/13 and 5/13 respectively. Now, finally we will find out the value of the following.
![\rightarrow {\underline{\boxed{\red{\sf{\dfrac{sin \theta\ +\ cos \theta}{sin \theta\ -\ cos \theta}}}}}}](https://tex.z-dn.net/?f=%20%5Crightarrow%20%7B%5Cunderline%7B%5Cboxed%7B%5Cred%7B%5Csf%7B%5Cdfrac%7Bsin%20%5Ctheta%5C%20%2B%5C%20cos%20%5Ctheta%7D%7Bsin%20%5Ctheta%5C%20-%5C%20cos%20%5Ctheta%7D%7D%7D%7D%7D%7D%20)
- By substituting the values, we get,
![\rule{200}{3}](https://tex.z-dn.net/?f=%5Crule%7B200%7D%7B3%7D)
![\sf \dashrightarrow {\dfrac{sin \theta\ +\ cos \theta}{sin \theta\ -\ cos \theta}\ =\ {\footnotesize{\dfrac{\Big( \dfrac{12}{13}\ +\ \dfrac{5}{13} \Big)}{\Big( \dfrac{12}{13}\ -\ \dfrac{5}{13} \Big)}}}} \\ \\ \\ \sf \dashrightarrow {\dfrac{sin \theta\ +\ cos \theta}{sin \theta\ -\ cos \theta}\ =\ {\footnotesize{\dfrac{\dfrac{17}{13}}{\dfrac{7}{13}}}}} \\ \\ \\ \sf \dashrightarrow {\dfrac{sin \theta\ +\ cos \theta}{sin \theta\ -\ cos \theta}\ =\ \dfrac{17}{13} \times \dfrac{13}{7}} \\ \\ \\ \sf \dashrightarrow {\dfrac{sin \theta\ +\ cos \theta}{sin \theta\ -\ cos \theta}\ =\ \dfrac{17}{\cancel{13}} \times \dfrac{\cancel{13}}{7}} \\ \\ \\ \dashrightarrow {\underbrace{\boxed{\pink{\frak{\dfrac{sin \theta\ +\ cos \theta}{sin \theta\ -\ cos \theta}\ =\ \dfrac{17}{7}}}}}_{\sf \blue{\tiny{Required\ value}}}}](https://tex.z-dn.net/?f=%20%5Csf%20%5Cdashrightarrow%20%7B%5Cdfrac%7Bsin%20%5Ctheta%5C%20%2B%5C%20cos%20%5Ctheta%7D%7Bsin%20%5Ctheta%5C%20-%5C%20cos%20%5Ctheta%7D%5C%20%3D%5C%20%7B%5Cfootnotesize%7B%5Cdfrac%7B%5CBig%28%20%5Cdfrac%7B12%7D%7B13%7D%5C%20%2B%5C%20%5Cdfrac%7B5%7D%7B13%7D%20%5CBig%29%7D%7B%5CBig%28%20%5Cdfrac%7B12%7D%7B13%7D%5C%20-%5C%20%5Cdfrac%7B5%7D%7B13%7D%20%5CBig%29%7D%7D%7D%7D%20%5C%5C%20%5C%5C%20%5C%5C%20%5Csf%20%5Cdashrightarrow%20%7B%5Cdfrac%7Bsin%20%5Ctheta%5C%20%2B%5C%20cos%20%5Ctheta%7D%7Bsin%20%5Ctheta%5C%20-%5C%20cos%20%5Ctheta%7D%5C%20%3D%5C%20%7B%5Cfootnotesize%7B%5Cdfrac%7B%5Cdfrac%7B17%7D%7B13%7D%7D%7B%5Cdfrac%7B7%7D%7B13%7D%7D%7D%7D%7D%20%5C%5C%20%5C%5C%20%5C%5C%20%5Csf%20%5Cdashrightarrow%20%7B%5Cdfrac%7Bsin%20%5Ctheta%5C%20%2B%5C%20cos%20%5Ctheta%7D%7Bsin%20%5Ctheta%5C%20-%5C%20cos%20%5Ctheta%7D%5C%20%3D%5C%20%5Cdfrac%7B17%7D%7B13%7D%20%5Ctimes%20%5Cdfrac%7B13%7D%7B7%7D%7D%20%5C%5C%20%5C%5C%20%5C%5C%20%5Csf%20%5Cdashrightarrow%20%7B%5Cdfrac%7Bsin%20%5Ctheta%5C%20%2B%5C%20cos%20%5Ctheta%7D%7Bsin%20%5Ctheta%5C%20-%5C%20cos%20%5Ctheta%7D%5C%20%3D%5C%20%5Cdfrac%7B17%7D%7B%5Ccancel%7B13%7D%7D%20%5Ctimes%20%5Cdfrac%7B%5Ccancel%7B13%7D%7D%7B7%7D%7D%20%5C%5C%20%5C%5C%20%5C%5C%20%5Cdashrightarrow%20%7B%5Cunderbrace%7B%5Cboxed%7B%5Cpink%7B%5Cfrak%7B%5Cdfrac%7Bsin%20%5Ctheta%5C%20%2B%5C%20cos%20%5Ctheta%7D%7Bsin%20%5Ctheta%5C%20-%5C%20cos%20%5Ctheta%7D%5C%20%3D%5C%20%5Cdfrac%7B17%7D%7B7%7D%7D%7D%7D%7D_%7B%5Csf%20%5Cblue%7B%5Ctiny%7BRequired%5C%20value%7D%7D%7D%7D%20)
∴ Hence, the required answer is 17/7.