It is considered to be a conductor
The answer is (2) equal to. In redox reactions, you can't just lose electrons somewhere. If an electrons is lost by one, it must be gained by another. Hence, the importance of balancing redox reactions.
Answer:
750mmHg
Explanation:
The following data were obtained from the question:
T1 = 127°C = 127 +273 = 400K
T2 = 27°C = 27 +273 = 300K
P1 = 1000mmHg
P2 =?
P1/T1 = P2/T2
1000/400 = P2 /300
Cross multiply
400 x P2 = 1000 x 300
Divide both side by 400
P2 = (1000 x 300)/400
P2 = 750mmHg
Therefore, the new pressure after cooling is 750mmHg
Find your answer in the explanation below.
Explanation:
PV = nRT is called the ideal gas equation and its a combination of 3 laws; Charles' law, Boyle's law and Avogadro's law.
According to Boyle's law, at constant temperature, the volume of a gas is inversely proportional to the pressure. i.e V = 1/P
From, Charles' law, we have that volume is directly proportional to the absolute temperature of the gas at constant pressure. i.e V = T
Avogadro's law finally states that equal volume of all gases at the same temperature and pressure contain the same number of molecules. i.e V = n
Combining the 3 Laws together i.e equating volume in all 3 laws, we have
V = nT/P,
V = constant nT/P
(constant = general gas constant = R)
V = RnT/P
by bringing P to the LHS, we have,
PV = nRT.
Q.E.D
Answer:
ΔH = +155.6 kJ
Explanation:
The Hess' Law states that the enthalpy of the overall reaction is the sum of the enthalpy of the step reactions. To do the addition of the reaction, we first must reorganize them, to disappear with the intermediaries (substances that are not presented in the overall reaction).
If the reaction is inverted, the signal of the enthalpy changes, and if its multiplied by a constant, the enthalpy must be multiplied by the same constant. Thus:
N₂(g) + O₂(g) → 2NO(g) ΔH = +180.7 kJ
2NO(g) + O₂(g) → 2NO₂(g) ΔH = -113.1 kJ
2N₂O(g) → 2N₂(g) + O₂(g) ΔH = -163.2 kJ
The intermediares are N₂ and O₂, thus, reorganizing the reactions:
N₂(g) + O₂(g) → 2NO(g) ΔH = +180.7 kJ
NO₂(g) → NO(g) + (1/2)O₂(g) ΔH = +56.55 kJ (inverted and multiplied by 1/2)
N₂O(g) → N₂(g) + (1/2)O₂(g) ΔH = -81.6 kJ (multiplied by 1/2)
------------------------------------------------------------------------------------
N₂O(g) + NO₂(g) → 3NO(g)
ΔH = +180.7 + 56.55 - 81.6
ΔH = +155.6 kJ