Answer:
A- Greatest Kinetic Energy
B- Increasing Potential Energy
C- Increasing Kinetic Energy
D- Greatest Potential Energy
Explanation:
hope this is right.
Answer:
<h3>14.97m/s</h3>
Explanation:
Given
Initial velocity of the car u = 8m/s
Distance travelled by the rider S = 40m
Acceleration a = 2m/s²
Required
rider's velocity after the acceleration v
Using the equation of motion
v² = u²+2as
v² = 8²+2(2)(40)
v² = 64+160
v² = 224
v = √224
v = 14.97m/s
Hence the rider's velocity after the acceleration is 14.97m/s
Answer:
<u><em>Definition of spectral line: </em></u><em>one of a series of linear images formed by a spectrograph or similar instrument and corresponding to a narrow portion of the spectrum of the radiation emitted or absorbed by a particular source.</em>
<em />
<u><em>Definition of Wavelength:</em></u><em> can be defined as the distance between two successive crests or troughs of a wave. It is measured in the direction of the wave. ... Wavelength is inversely proportional to frequency. This means the longer the wavelength, lower the frequency.</em>
<em />
<em>So, the spectrum is the range of wavelength in visible light. While, wavelength is the length of a wave.</em>
<em></em>
Explanation:
I hope this helps!
The final temperature of the system will be equal to the initial temperature, and which is 373K. The work done by the system is 409.8R Joules.
To find the answer, we need to know about the thermodynamic processes.
<h3>How to find the final temperature of the gas?</h3>
- Any processes which produce change in the thermodynamic coordinates of a system is called thermodynamic processes.
- In the question, it is given that, the tank is rigid and non-conducting, thus, dQ=0.
- The membrane is raptured without applying any external force, thus, dW=0.
- We have the first law of thermodynamic expression as,

,

- Thus, the final temperature of the system will be equal to the initial temperature,

<h3>How much work is done?</h3>
- We found that the process is isothermal,
- Thus, the work done will be,

Where, R is the universal gas constant.
<h3>What is a reversible process?</h3>
- Any process which can be made to proceed in the reverse direction is called reversible process.
- During which, the system passes through exactly the same states as in the direct process.
Thus, we can conclude that, the final temperature of the system will be equal to the initial temperature, and which is 373K. The work done by the system is 409.8R Joules.
Learn more about thermodynamic processes here:
brainly.com/question/28067625
#SPJ1