Answer:
The appropriate solution is "61.37 s".
Explanation:
The given values are:
Boat moves,
= 10 m/s
Water flowing,
= 1.50 m/s
Displacement,
d = 300 m
Now,
The boat is travelling,
= 
= 
Travelling such distance for 300 m will be:
⇒ 

On putting the values, we get


Throughout the opposite direction, when the boat seems to be travelling then,
= 
= 
Travelling such distance for 300 m will be:
⇒ 

On putting the values, we get


hence,
The time taken by the boat will be:
= 
= 
I'm not sure but I had this question on a benchmark I think its the density of the wire you need to find the density or the mass I'm not sure but i do remember this question
There are two torques t1 and t2 on the beam due to the weights, one torque t3 due to the weight of the beam, and one torque t4 due to the string.
You need to figure out t4 to know the tension in the string.
Since the whole thing is not moving t1 + t2 + t3 = t4.
torque t = r * F * sinФ = distance from axis of rotation * force * sin (∡ between r and F)
t1 =3.2 * 44g
t2 = 7 * 49g
t3 = 3.5 * 24g
t4 = t1 + t2 + t3 = 5570,118
The t4 also is given by:
t4 = r * T * sin Ф
r = 7
Ф = 32°
T: tension in the string
T = t4 / (r * sinФ)
T = t4 / (7 * sin(32°))
T = 1501,6 N
Answer:
0.80 m
Explanation:
elastic potential energy formula
elastic potential energy = 0.5 × spring constant × (extension) 2
Answer:
Explanation:
any law stating that some quantity or property remains constant during and after an interaction or process, as conservation of charge or conservation of linear momentum.