Answer: capillary action
Explanation: it occurs when the adhesion forces (attraction between two surfaces or substances) in the liquid are stronger than the cohesion forces (attraction between the same molecule)
Answer:
The structure with the ring flipped is the most stable
Explanation:
We have the trans 1,2 - dimethylcyclohexane. With the wedge/dash structure we could not figure is this form is stable (If we do a comparison with the cis structure). But when we do a chair structure and ring flipped structure, this is easier to look.
The picture attached shows the structures, they are labeled as 1, 2 and 3, according to this problem.
In the chair structure, according to the picture below, you can see that both methyls are heading in the axial positions of the ring (One facing upward and the other downward). This is pretty stable, however, when the methyls are in those positions, the methyl position 1, can undergoes an 1,3 diaxial interactions with the hydrogens atoms (They are not drawn, but still are there), so this interaction makes this structure a little less stable that it can be.
On the other side, the ring flipped structure, we can see that both methyls are in the equatorials positions of the ring, and in these positions, it can avoid the 1,4 diaxial interactions with the hydrogens atoms, making this structure the most stable structure.
Hope this helps
<h3>→soft and reactive metals. </h3>
Explanation:
<h3>Alkali metals are soft and reactive metals. They react vigorously with water and become more reactive. And other hand halogens are reactive non metals. ... Halogens can be solid, liquid, gaseous at room temperature and the melting point increase when they get bigger.</h3>
<h2>#CAREYINGTOLEARN❤️</h2>
<u>Answer:</u> The molality of non-electrolyte is 24.69 m
<u>Explanation:</u>
We are given:
Mole fraction of saturated aqueous solution = 0.310
This means that 0.310 moles of non-electrolyte is present.
Moles of water (solvent) = 1 - 0.310 = 0.690 moles
To calculate the mass from given number of moles, we use the equation:

Moles of water = 0.690 moles
Molar mass of water = 18 g/mol
Putting values in above equation, we get:

To calculate the molality of solution, we use the equation:

Where,
= Moles of solute (non-electrolyte) = 0.310 moles
= Mass of solvent (water) = 12.42 g
Putting values in above equation, we get:

Hence, the molality of non-electrolyte is 24.69 m
Answer:
4.5 moles
Explanation:
One mole is equal to 6.022 x 10^23 atoms
2.71 x 10^24 atoms * 1 mol/ 6.022 x 10^23 atoms = 4.5 moles