Answer:
Hans is more powerful
Explanation:
Power: This can be defined as the rate at which work is done or energy is used up.
The expression for power is given as,
P = E/t
P = mgh/t................. Equation 1
Where P = power, W = Work, t = time, m = mass, h = height, g = acceleration due to gravity.
Hans' power
P = mgh/t
Given: m = 100 kg, h = 2 m, g = 9.8 m/s², t = 3 s
Substitute into equation 1
P = 100(9.8)(2)/3
P = 653.33 W.
Frans' power
P' = mgh/t
Given; m = 200 kg, h = 5 m, t = 20 s.
P' = 200(5)(9.8)/20
P' = 9800/20
P' = 490 W
from the above,
since P>P'
Hence, Hans is more powerful
Answer:
<em>The power generated is = 5.33×10⁸ Watt. </em>
Explanation:
Power: Power can be defined as the time rate of doing work. The S.I unit of power is <em>Watt(W).</em>
<em>Mathematically,</em>
<em>Power (P) = Work done/time or Energy/time</em>
P = mgh/t............................... Equation 1
P = δgh............................. Equation 2
Where δ = fall rate, g = acceleration due to gravity, h = height.
<em>Given: </em>δ = 1.1×10⁶ kg/s, h = 49.4 m g = 9.81 m/s²
Substituting these values into equation 2
P = 1.1×10⁶×49.4×9.81
P = 533.08×10⁶
<em>P = 5.33×10⁸ Watt.</em>
<em>Thus the power generated is = 5.33×10⁸ Watt. </em>
Experimental Evidence.
Scientists conduct experiments or observations to gather evidence that either support or disprove a given hypothesis. Hence, all the scientific explanations are based on this body of observations.
When you touch<span> a doorknob (or something else made of metal), which has a positive charge with few electrons.</span>
Answer:
The ratio of the energy stored by spring #1 to that stored by spring #2 is 2:1
Explanation:
Let the weight that is hooked to two springs be w.
Spring#1:
Force constant= k
let x1 be the extension in spring#1
Therefore by balancing the forces, we get
Spring force= weight
⇒k·x1=w
⇒x1=w/k
Energy stored in a spring is given by
where k is the force constant and x is the extension in spring.
Therefore Energy stored in spring#1 is, 
⇒
⇒
Spring #2:
Force constant= 2k
let x2 be the extension in spring#2
Therefore by balancing the forces, we get
Spring force= weight
⇒2k·x2=w
⇒x2=w/2k
Therefore Energy stored in spring#2 is, 
⇒
⇒
∴The ratio of the energy stored by spring #1 to that stored by spring #2 is
2:1