Answer:
Cloudy nights can be warmer than clear nights because clouds trap heat absorbed by Earth during daylight hours.
The grams of glucose are needed to prepare 400g of a 2.00%(m/m) glucose solution g is calculated as below
=% m/m =mass of the solute/mass of the solution x100
let mass of solute be represented by y
mass of solution = 400 g
% (m/m) = 2% = 2/100
grams of glucose is therefore =2/100 = y/400
by cross multiplication
100y = 800
divide both side by 100
y= 8.0 grams
Answer:
The volume of sodium hydroxide at the equivalence point is:
- <u>14.9 mL of sodium hydroxide</u>.
Explanation:
<u>The equivalence point occurs when, in this case, the HCl is completely neutralized with the solution of NaOH, how you can see this doesn't occur in the last point but occurs in the nineteenth point, where the pH is no more acid (below to 7) but is 11 approximately</u>, then you must see in the X-axis from this point and you can see the volume is almost 15, by this reason I calculate the valor of 14.9 milliliters.
Answer:
lighting a match is the answer.
Answer:
Molar mass→ 0.930 g / 6.45×10⁻³ mol = 144.15 g/mol
Explanation:
Let's apply the formula for freezing point depression:
ΔT = Kf . m
ΔT = 74.2°C - 73.4°C → 0.8°C
Difference between the freezing T° of pure solvent and freezing T° of solution
Kf = Cryoscopic constant → 5.5°C/m
So, if we replace in the formula
ΔT = Kf . m → ΔT / Kf = m
0.8°C / 5.5 m/°C = m → 0.0516 mol/kg
These are the moles in 1 kg of solvent so let's find out the moles in our mass of solvent which is 0.125 kg
0.0516 mol/kg . 0.125 kg = 6.45×10⁻³ moles. Now we can determine the molar mass:
Molar mass (mol/kg) → 0.930 g / 6.45×10⁻³ mol = 144.15 g/mol