Fahrenheit. 60 degrees celcius is 140 degrees fahrenheit, which is very hot.
Answer:
How to convert volts to electron-volts
How to convert electrical voltage in volts (V) to energy in electron-volts (eV).
You can calculate electron-volts from volts and elementary charge or coulombs, but you can't convert volts to electron-volts since volt and electron-volt units represent different quantities.
Volts to eV calculation with elementary charge
The energy E in electron-volts (eV) is equal to the voltage V in volts (V), times the electric charge Q in elementary charge or proton/electron charge (e):
E(eV) = V(V) × Q(e)
The elementary charge is the electric charge of 1 electron with the e symbol.
So
electronvolt = volt × elementary charge
or
eV = V × e
Example
What is the energy in electron-volts that is consumed in an electrical circuit with voltage supply of 20 volts and charge flow of 40 electron charges?
E = 20V × 40e = 800eV
Volts to eV calculation with coulombs
The energy E in electron-volts (eV) is equal to the voltage V in volts (V), times the electrical charge Q in coulombs (C) divided by 1.602176565×10-19:
E(eV) = V(V) × Q(C) / 1.602176565×10-19
So
electronvolt = volt × coulomb / 1.602176565×10-19
or
eV = V × C / 1.602176565×10-19
Example
What is the energy in electron-volts that is consumed in an electrical circuit with voltage supply of 20 volts and charge flow of 2 coulombs?
E = 20V × 2C / 1.602176565×10-19 = 2.4966×1020eV
Explanation:
Stir it,
Or as warmer water makes solutes dissolve faster Sarah can do that
Answer:
The answers are options b , c and d.
Hope this helps.
Answer:
5746.0 mL.
Explanation:
We can use the general law of ideal gas:<em> PV = nRT.</em>
where, P is the pressure of the gas in atm.
V is the volume of the gas in L.
n is the no. of moles of the gas in mol.
R is the general gas constant,
T is the temperature of the gas in K.
If n and P are constant, and have two different values of V and T:
<em>V₁T₂ = V₂T₁</em>
<em></em>
V₁ = 6193.0 mL, T₁ = 62.3°C + 273 = 335.3 K.
V₂ = ??? mL, T₂ = 38.1°C + 273 = 311.1 K.
<em>∴ V₂ = V₁T₂/T₁ </em>= (6193.0 mL)(311.1 K)/(335.3 K) = <em>5746.0 mL.</em>