Answer:
-6
Step-by-step explanation:
We know that since Ax + By = 3 passes through (-7, 2), then if we plug -7 in for x and 2 in for y, the equation is satisfied. So, let's do that:
Ax + By = 3
A * (-7) + B * 2 = 3
-7A + 2B = 3
We also know that this line is parallel to x + 3y = -5, which means their slopes are the same. Let's solve for y in the second equation:
x + 3y = -5
3y = -x - 5
y = (-1/3)x - (5/3)
So, the slope of this line is -1/3, which means the slope of Ax + By = 3 is also -1/3. Let's solve for y in the first equation:
Ax + By = 3
By = -Ax + 3
y = (-A/B)x + 3/B
This means that -A/B = -1/3. So, we have a relationship between A and B:
-A/B = -1/3
A/B = 1/3
B = 3A
Plug 3A in for B into the equation we had where -7A + 2B = 3:
-7A + 2B = 3
-7A + 2 * 3A = 3
-7A + 6A = 3
-A = 3
A = -3
Use this to solve for B:
B = 3A
B = 3 * (-3) = -9
So, B = -9 and A = -3. Then B - A is:
B - A = -9 - (-3) = -9 + 3 = -6
The answer is -6.
<em>~ an aesthetics lover</em>
Y = 44
180 - 88 = 92
180 - 92 = 88
88/2 = 44
Answer:
ANSWER
M=(−72,12).
Step-by-step explanation:
The midpoint for two points P=(x1,y1) and Q=(x2,y2) is
M=(x1+x22,y1+y22).
We have that x1=−3, y1=−1, x2=−4, y2=2.
So, M=(−3+(−4)2,−1+(2)2)=(−72,12)
Answer:
It's B
Step-by-step explanation:
because each bracelet is $3 and 3 is a factor of 9 because 3x3 = 9 :)
Answer:
<h2><em><u>x</u></em><em><u> </u></em><em><u>=</u></em><em><u> </u></em><em><u>-</u></em><em><u>4</u></em></h2>
Step-by-step explanation:
<h3>
<u>Given</u><u> </u><u>Equation</u><u>:</u></h3>
<h3>
<u>Question</u><u>:</u></h3>
- Whether x has one solution or infinite solutions or no solutions?
<h3>
<u>Solution</u><u>:</u></h3>
=> 3x + 9 = 2x + 5
- <em>(</em><em>On</em><em> </em><em>shifting</em><em> </em><em>like</em><em> </em><em>terms</em><em> </em><em>to</em><em> </em><em>one</em><em> </em><em>side</em><em> </em><em>we</em><em> </em><em>get</em><em>)</em>
=> 3x - 2x = 5 - 9
- <em>(</em><em>On</em><em> </em><em>subtracting</em><em>)</em>
=> x = - 4
<h3>
<u>Result</u><u>:</u></h3>
<em><u>Hence</u></em><em><u>,</u></em><em><u> </u></em><em><u>x</u></em><em><u> </u></em><em><u>has</u></em><em><u> </u></em><em><u>only</u></em><em><u> </u></em><em><u>one</u></em><em><u> </u></em><em><u>solution</u></em><em><u> </u></em><em><u>that</u></em><em><u> </u></em><em><u>is</u></em><em><u>,</u></em><em><u> </u></em><em><u>x</u></em><em><u> </u></em><em><u>=</u></em><em><u> </u></em><em><u>-</u></em><em><u>4</u></em><em><u> </u></em><em><u>(</u></em><em><u>Ans</u></em><em><u>)</u></em>