Answer:
7,217*10^28 atoms/m^3
Explanation:
- Metal: Vanadium
- Density: 6.1 g/cm^3
- Molecuar weight: 50,9 g/mol
The Avogadro's Number, 6,022*10^23, is the number of atoms in one mole of any substance. To calculate the number of atoms in one cubic meter of vanadium we write:
1m^3*(100^3 cm^3/1 m^3)*(6,1 g/1 cm^3)*(1 mol/50,9g)*(6,022*10^23 atoms/1 mol)=7,217*10^28 atoms
Therefore, for vanadium we have 7,217*10^28 atoms/m^3
Answer:
See attached picture.
Explanation:
See attached picture for explanation.
Answer:
2074.2 KW
Explanation:
<u>Determine power developed at steady state </u>
First step : Determine mass flow rate ( m )
m / Mmax = ( AV )₁ P₁ / RT₁ -------------------- ( 1 )
<em> where : ( AV )₁ = 8.2 kg/s, P₁ = 0.35 * 10^6 N/m^2, R = 8.314 N.M / kmol , </em>
<em> T₁ = 720 K . </em>
insert values into equation 1
m = 0.1871 kmol/s ( mix )
Next : calculate power developed at steady state ( using ideal gas tables to get the h values of the gases )
W( power developed at steady state )
W = m [ Yco2 ( h1 - h2 )co2
Attached below is the remaining part of the detailed solution
Answer: 150m
Explanation:
The following can be depicted from the question:
Dimensions of outer walls = 9.7m × 14.7m.
Thickness of the wall = 0.30 m
Therefore, the plinth area of the building will be:
= (9.7 + 0.30/2 + 0.30/2) × (14.7 × 0.30/2 + 0.30/2)
= 10 × 15
= 150m
All of the dimensions on an aircraft drawing are _________ to the bottom of the drawing
Answer: parallel