At -25 °C, methanol, whose boiling point is 64.7 °C and its melting point is -97.6 °C, is in the liquid state.
The melting point is the temperature at which a substance passes from solid to liquid. Below the melting point, a substance is in the solid state. Above the melting point, a substance is in the liquid or gas state.
The boiling point is the temperature at which a substance passes from liquid to gas. Below the boiling point, a substance is solid or liquid. Above the boiling point, a substance is in the gas state.
At -25 °C, methanol is above the melting point (-97.6 °C) and below the boiling point (64.7 °C). Thus, it is in the liquid state.
At -25 °C, methanol, whose boiling point is 64.7 °C and its melting point is -97.6 °C, is in the liquid state.
You can learn more about the melting and boiling points here: brainly.com/question/5753603?referrer=searchResults
The answer would be:
D = M/V
D=Density
M= mass
V= volume
Zinc is no longer the positive electrode because copper has a more positive (higher) value than zinc (anode). The anode value is reduced by the potential of the other electrode.
<h3>In a galvanic cell, is the anode positive or negative?</h3>
In a galvanic (voltaic) cell, the cathode is regarded as positive and the anode as negative. This seems reasonable given that the cathode is where electrons flow from the anode, which is where they originate.
<h3>What is a galvanic cell?</h3>
An electrochemical cell called a galvanic cell or voltaic cell, respectively named after the scientists Luigi Galvani and Alessandro Volta produces an electric current by spontaneous oxidation-reduction reactions. A typical device typically consists of two distinct metals that are submerged in separate beakers that each contains their own metal ions in solution and are either connected by a salt bridge or divided by a porous membrane.
Learn more about Galvanic cells here:-
brainly.com/question/13927063
#SPJ4
Answer:
An atom gets larger as the number of electronic shells increase; therefore the radius of atoms increases as you go down a certain group in the periodic table of elements. In general, the size of an atom will decrease as you move from left to the right of a certain period.
Explanation: