Answer:

Explanation:
Given:
For a school event, 1/6 of the athletic field is reserved for the fifth -grade classes and the reserved part of the field is divided equally among the 4 fifth grade classes in the school.
To find: fraction of the whole athletic field reserved for each fifth class
Solution:
Fraction of the whole athletic field reserved for four fifth classes = 
So, fraction of the whole athletic field reserved for each fifth class = 
Answer:
I'm pretty sure its the one that says very little at the beginning but if I get it wrong I'm sorry
Explanation:
To answer this question, we'll need to use the Ideal Gas Law:
p
V
=
n
R
T
,
where
p
is pressure,
V
is volume,
n
is the number of moles
R
is the gas constant, and
T
is temperature in Kelvin.
The question already gives us the values for
p
and
T
, because helium is at STP. This means that temperature is
273.15 K
and pressure is
1 atm
.
We also already know the gas constant. In our case, we'll use the value of
0.08206 L atm/K mol
since these units fit the units of our given values the best.
We can find the value for
n
by dividing the mass of helium gas by its molar mass:
n
=
number of moles
=
mass of sample
molar mass
=
6.00 g
4.00 g/mol
=
1.50 mol
Now, we can just plug all of these values in and solve for
V
:
p
V
=
n
R
T
V
=
n
R
T
p
=
1.50 mol
×
0.08206 L atm/K mol
×
273.15 K
1 atm
= 33.6 L
this is not the answer but it will help you
do by the formula it is on the answer
Answer:
For a particular chemical reaction, the enthalpy of the reactants is -400 kJ. The enthalpy of the products is -390 kJ. The entropy of the reactants is 0.2 kJ/K. The entropy of the products is 0.3 kJ/K. The temperature of the reaction is 25oC. What can you conclude about this reaction?
It is exergonic
It is endergonic
it is a redox reaction
It is being catalyzed by an enzyme
A chemical symbol is a shorthand method of representing an element. Instead of writing out the name of an element, we represent an element name with one or two letters. As you know, the periodic table is a chemist's easy reference guide. ... Each element is represented by a chemical symbol consisting of letters