Answer:
The work input during this process is -742 kJ
Explanation:
Given;
Initial temperature of nitrogen T₁ = 250 K
final temperature of nitrogen T₂ = 450 K
mass of nitrogen, m = 5 kg

The work input during the process is calculated as;

where;
R is gas constant = 0.2968 kJ/kgK
substitute given values in above equation.

Therefore, the work input during this process is -742 kJ
The total distance traveled by the car at the given velocity and time is 900 m.
The given parameters:
- <em>initial velocity of the car, u = 20 m/s</em>
- <em>acceleration of the car, a = 12 m/s²</em>
- <em>time of motion of the car, t = 20 s</em>
- <em>final time = 30 s</em>
- <em>final acceleration = 2 m/s²</em>
The final time of motion of car before coming to rest is calculated as follows;

The graph of the car's motion is in the image uploaded.
The total distance traveled by the car is calculated as follows;

Thus, the total distance traveled by the car at the given velocity and time is 900 m.
Learn more about velocity-time graph here: brainly.com/question/24874645

Actually Welcome to the Concept of the Treatment.
Basically according to the theory, GAMMA rays are used to treat the cancer.
c.) GAMMA RADIATIONS
Answer:
arge number of electrons free to move between the charged ions in the lattice.
Explanation:
The metallic bond occurs when an atom with few electrons is united in its last level, therefore the best way to decrease the total energy of the system is to lose all its electrons to remain with the configuration of a noble gas. The electrons that it loses cannot be acquired by other atoms since they all have few electrons, thus leaving a large number of electrons free to move between the charged ions in the lattice.
Some important characteristics emerge from this description of the metallic bond:
* It has many free electrons therefore its electrical conductivity is high
* As the charged ions are fixed, the material can be malleable, bent without breaking since the free electrons create the bond that keeps the system stable.
* As the electrons are free when heating a part of the material, these electrons acquire energy and rapidly propagate it to the other side, giving a high thermal conductivity
* As the temperature increases, the electrons acquire more kinetic energy, which is why there are more collisions between them and consequently the resistivity of the material increases.