1. ionic compound , aqueous cations and aqueous anions
2. covalent compound aqueous covalent compound
<u>Explanation:</u>
1. A(n) <u>ionic compound </u> dissolves in water , H₂O(l), will produce <u>aqueous cations </u> and <u>aqueous anions </u>in solution.
When NaCl dissolves in water it will produce Na⁺ and Cl⁻ ions in solution
2. A(n) <u>covalent compound </u> dissolves in water , H₂O(l), will produce <u>aqueous covalent compound </u>in solution.
When Ammonia (NH₃) dissolves in water it forms aqueous ammonia, NH₃(aq)
Organic compounds, like carbohydrates, proteins, nucleic acids, and lipids, are all good examples of covalent compounds.
Answer:
ΔH= 3KJ
Explanation:
The total heat absorbed is the total energy in the process, and that is in form of entalpy.
ΔH = q + ΔHvap, where q is the heat necessary for elevate the temperature of dietil ether. Suppose the initial temperature is room temperature (25ºC=298 K), then
q= 10g x2.261 J/gK x(310 K - 298K)= 271.32 J= 0.3 kJ
Then
ΔHvap = 10g C4H10O x (1 mol C4H10O/74.12 g C4H10O) x( 15.7 KJ/ 1 mol C4H10O) = 2.12 KJ
ΔH= 2.5KJ ≈ 3KJ
Answer:
1.47 atm
Explanation:
Step 1: Calculate the moles corresponding to 41.6 g of oxygen
The molar mass of oxygen is 32.00 g/mol.
41.6 g × 1 mol/32.00 g = 1.30 mol
Step 2: Convert 30.0 °C to Kelvin
We will use the following expression.
K = °C + 273.15 = 30.0 + 273.15 = 303.2 K
Step 3: Calculate the pressure exerted by the oxygen
We will use the ideal gas equation.
P × V = n × R × T
P = n × R × T / V
P = 1.30 mol × (0.0821 atm.L/mol.L) × 303.2 K / 22.0 L = 1.47 atm
The answer is B
To write the equilibrium constant for an equation, all you have to do is divide the products by the reactants. The reactants are always on the left side, and the products are always on the right side. The coefficients of the elements will be written as the exponent of that same element. However, in this equation, we do not have to write any exponents, as there are no coefficient but 1.
When an entire species perishes the species becomes extinct.