Let's go over the given information. We have the volume, temperature and pressure. From the ideal gas equation, that's 4 out of 5 knowns. So, we actually don't need Pvap of water anymore. Assuming ideal gas, the solution is as follows:
PV=nRT
Solving for n,
n = PV/RT = (753 torr)(1 atm/760 torr)(195 mL)(1 L/1000 mL)/(0.0821 L·atm/mol·K)(25+273 K)
n = 7.897×10⁻³ mol H₂
The molar mass of H₂ is 2 g/mol.
Mass of H₂ = 7.897×10⁻³ mol * 2 g/mol = <em>0.016 g H₂</em>
Answer: Option (c) is the correct answer.
Explanation:
When a weak acid reacts with a strong base then it results into the formation of a basic solution. Hence, the resulting solution will always have a pH greater than 7.
Since, at the equivalence point number of hydrogen ions become equal to the hydroxide ions. Therefore, pH of solution will be about 7.
So at the equivalence point, the weak acid will get neutralized due to the addition of strong base. Therefore, it will lead to the formation of conjugate base.
As a result, the solution will become slightly basic in nature.
Thus, we can conclude that at the equivalence point, the acid has all been converted into its conjugate base, resulting in a weakly acidic solution because at the equivalence point, the acid has all been converted into its conjugate base, resulting in a weakly basic solution.
Answer:
When the concentration of F- exceeds 0.0109 M, BaF2 will precipitate.
Explanation:
Ba²⁺(aq) + 2 F⁻(aq) <----> BaF₂(s)
When BaF₂ precipitates, the Ksp relation is given by
Ksp = [Ba²⁺] [F⁻]²
[Ba²⁺] = 0.0144 M
[F⁻] = ?
Ksp = (1.7 × 10⁻⁶)
1.7 × 10⁻⁶ = (0.0144) [F⁻]²
[F⁻]² = (1.7 × 10⁻⁶)/0.0144 = 0.0001180555
[F⁻] = √0.0001180555 = 0.01086 M = 0.0109 M
Hope this Helps!!!
3 moles of oxygen will react with 1 mole of ethylene. Convert 12.9 L of oxygen to x moles of oxygen, then divide by three.