V= 1/3 π r²h
this is the formula for a cone hope this helps :)
Answer:
a = 2 [m/s^2]
Explanation:
To solve this problem we must use the expressions of kinematics, we must bear in mind that when a body is at rest its velocity is zero.

where:
Vf = final velocity = 0
Vi = initial velocity = 60 [m/s]
a = desacceleration [m/s^2]
t = time = 30 [s]
Note: the negative sign of the above equation means that the car is slowing down, i.e. its speed decreases.
0 = 60 - (a*30)
a = 2 [m/s^2]
Answer:
c) It increases by a factor of 8
Explanation:
According to Faraday's law (and Lenz' law), the induced EMF is given as the rate of change of magnetic flux.
Mathematically:
V = -dФ/dt
Magnetic flux, Ф, is given as:
Ф = BA
where B = magnetic field strength and A = Area of object
Hence, induced EMF becomes:
V = -d(BA)/dt or -BA/t
If the magnetic field is increased by a factor of 4, (
) and the time required for the rod to move is decreased by a factor of 2 (
), the induced EMF becomes:


The EMF has increased by a factor of 8.
I assume there are choices to this question that you forgot to include. No matter, I could just lay out the concept so that you can understand the gist.
The best way to approach this is to know the definition of momentum. In physics, momentum is always defined in terms of equation. For momentum, it is the product of the mass and velocity. Therefore, any increase of these two parameters would promote greater momentum. The greater the mass paired with the faster the velocity, the greater the momentum.