- Height (h) = 10 m
- Density (ρ) = 1000 Kg/m^3
- Acceleration due to gravity (g) = 10 m/s^2
- We know, pressure in a fluid = hρg
- Therefore, the pressure exerted by a column of fresh water
- = hρg
- = (10 × 1000 × 10) Pa
- = 100000 Pa
<u>Answer</u><u>:</u>
<u>1000</u><u>0</u><u>0</u><u> </u><u>Pa</u>
Hope you could understand.
If you have any query, feel free to ask.
Explanation:
Liquids also exert pressure in all directions on the walls of the container they are stored in. We see water coming out from leaking pipes and taps. ... Gases (Air) also exert pressure in all directions
Answer: D Minarel extraction cannot be done in ways that does not completely destroy the environment
Explanation: Hope this helps !!
Answer:
The current will decrease.
Explanation:
When another bulb is added, the resistance is going to increase. Keep in mind that the current is inversely proportional to the resistance (<em>Ohm's law: R= </em><em>V</em><em>/</em><em>I</em><em> </em><em>).</em> Therefore when the resistance increase, the current running in the circuit will decrease.
Answer:
The transverse wave will travel with a speed of 25.5 m/s along the cable.
Explanation:
let T = 2.96×10^4 N be the tension in in the steel cable, ρ = 7860 kg/m^3 is the density of the steel and A = 4.49×10^-3 m^2 be the cross-sectional area of the cable.
then, if V is the volume of the cable:
ρ = m/V
m = ρ×V
but V = A×L , where L is the length of the cable.
m = ρ×(A×L)
m/L = ρ×A
then the speed of the wave in the cable is given by:
v = √(T×L/m)
= √(T/A×ρ)
= √[2.96×10^4/(4.49×10^-3×7860)]
= 25.5 m/s
Therefore, the transverse wave will travel with a speed of 25.5 m/s along the cable.