Answer:
Friction force is the force that one object exerts in another when the two rub against each other. Most of the time, friction force opposes the motion of an object.
Explanation:
kinetic energy is converted into elastic potential energy stored in the brakes.
Answer:
C) is zero
Explanation:
According to the law of energy conservation, the total mechanical energy of the object is conserved. A book falling a distance d would have a change in potential energy, resulting in the same change in kinetic energy. But the total mechanical energy must be the same. So there's 0 change in total energy of the system.
Answer:
4.0 m/s
Explanation:
The motion of the diver is the motion of a projectile: so we need to find the horizontal and the vertical component of the initial velocity.
Let's consider the horizontal motion first. This motion occurs with constant speed, so the distance covered in a time t is
where here we have
d = 3.0 m is the horizontal distance covered
vx is the horizontal velocity
t = 1.3 s is the duration of the fall
Solving for vx,
Now let's consider the vertical motion: this is an accelerated motion with constant acceleration g=9.8 m/s^2 towards the ground. The vertical position at time t is given by
where
h = 4.0 m is the initial height
vy is the initial vertical velocity
We know that at t = 1.3 s, the vertical position is zero: y = 0. Substituting these numbers, we can find vy
So now we can find the magnitude of the initial velocity: