Answer:
Energy loss per minute will be 
Explanation:
We have given the star produces power of 
We know that 1 W = 1 J/sec
So 
Given time = 1 minute = 60 sec
So the energy loss per minute 
We multiply with 60 we have to calculate energy loss per minute
<h2>
Answer:</h2>
If a car is rounding a flat curve, it experiences a centripetal force that pulls it towards the center of the circle it is rotating in.
Now,
The centripetal force can be balanced by the centrifugal force caused due to the acceleration of the body at the high speed which counters the centripetal force and in turn <u>prevents the car from slipping down the curve.</u>
So,
If the car doesn't hit the gas then the <em><u>car will fall down from the curve</u></em> as the Centripetal force will exceed the Centrifugal force of the car.
However, if the car doesn't hit the brake then the <em><u>car will maintain it's position on the flat curve</u></em> track as the centrifugal force will counter the effect of centripetal force directed towards the center.
Slower cooling engenders the growth of larger crystals in igneous rocks, thus, your answer should be slow cooling!
Hope this helped!