Answer:
the spring constant k = 
the value for the damping constant 
Explanation:
From Hooke's Law

Thus; the spring constant k = 
The amplitude is decreasing 37% during one period of the motion


Therefore; the value for the damping constant 
Answer:
change in internal energy 3.62*10^5 J kg^{-1}
change in enthalapy 5.07*10^5 J kg^{-1}
change in entropy 382.79 J kg^{-1} K^{-1}
Explanation:
adiabatic constant 
specific heat is given as 
gas constant =287 J⋅kg−1⋅K−1

specific heat at constant volume

change in internal energy 

change in enthalapy 

change in entropy



Answer:
The number of protons can be found by looking at the atomic number
Explanation:
Its at the very top of the little element box
Answer:
The amount of mass that needs to be converted to release that amount of energy is 
Explanation:
From Albert Einstein's Energy equation, we can understand that mass can get converted to energy, using the formula

where
= change in mass
c = speed of light = 
Making m the subject of the formula, we can find the change in mass to be

There fore, the amount of mass that needs to be converted to release that amount of energy is 1.122 X 10 ^-7 kg
The answer shall be helious