Answer:
They oscillates perpendicularly to one another, the oscillation of one field generates the other field.
Explanation:
In a light wave, an oscillating electric field of a light wave produces a magnetic field, and the magnetic field also oscillates to produce an electric field. The magnetic field and the electric field of a light wave both oscillates perpendicularly to one another. The resultant energy and direction of the wave generated as a result of these oscillating fields is propagated perpendicularly to both fields.
Answer:
8.80 Hz
Explanation:
The frequency of a loaded spring is given by

where k and m are the spring constant and the mass of the load respectively. The values of these do not change because they are internal properties of the components of the system.
Hence, the frequency of the vertical spring mass does not change and is 8.80 Hz.
On the other hand, the frequency of the simple pendulum is affected because it is given by

where g and l are acceleration due to gravity and length of the pendulum, respectively. It is thus seen that it depends on g, which changes with location. In fact, the new frequency is given by

Answer:
Explanation:
Let after time t , Tina catches up David .
Distance travelled by them are equal ,
Distance travelled by Tina
s = ut + 1/2 a t²
= .5 x 2.10 t²
= 1.05 t²
Distance travelled by David
= 30 t ( because of uniform velocity )
1.05 t² = 30t
t = 28.57 s
Distance travelled by Tina
= 1/2 a t²
= .5 x 2.10 x 28.57²
= 857 m approx.
Answer:
there is the increase the temperature of cold body and decrease the temperature of hot body
To place the poles of a 1. 5 v battery to achieve the same electric field is 1.5×10−2 m
The potential difference is related to the electric field by:
∆V=Ed
where,
∆V is the potential difference
E is the electric field
d is the distance
what is potential difference?
The difference in potential between two points that represents the work involved or the energy released in the transfer of a unit quantity of electricity from one point to the other.
We want to know the distance the detectors have to be placed in order to achieve an electric field of
E=1v/cm=100v/cm
when connected to a battery with potential difference
∆v=1.5v
Solving the equation,we find



learn more about potential difference from here: brainly.com/question/28166044
#SPJ4