1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Masteriza [31]
3 years ago
12

A small 22 kilogram canoe is floating downriver at a speed of 5 m/s. What's the canoes kinetic energy? _______ Joules

Physics
2 answers:
netineya [11]3 years ago
8 0
The non-relativistic formula for kinetic energy for low speeds is :

K.E = 0.5mv^2 = 0.5 * 22 * (5)^2 = 275 J
Lelu [443]3 years ago
6 0

275 joules is your answer

You might be interested in
A 400-kg object has a 100-Newton rightward net force being applied to it. What is the magnitude of the rightward acceleration on
aliya0001 [1]

Answer:

The answer to your question is a = 0.25 m/s²

Explanation:

Data

mass = m = 400 kg

Force = F = 100 N

acceleration = a = ? m/s²

Process

To solve this problem use Newton's second law that states that the force applied to an object is directly proportional to the mass of the body times its acceleration.

Formula

                       F = ma

solve for a

                       a = \frac{F}{m}

Substitution

                       a = \frac{100}{400}

Simplification and result

                              a = 0.25 m/s²

5 0
3 years ago
A 14n force is applied for 0.33 seconds, calculate the impulse
Shalnov [3]

Answer:

4.62 N-s

Explanation:

recall that the formula for impulse is given by

Impulse = Force x change in time

in our case, we are given

Force = 14 N

change in time = 0.33s

Simply substituting the above into the equation for impulse, we get

Impulse = Force x change in time

Impulse = 14 x 0.33

= 4.62 N-s

5 0
3 years ago
A team of dogs accelerates a 290kg dogsled from 0 to 6.0m/s in 3.0 s. Assume that the acceleration is constant.Part AWhat is the
Mademuasel [1]

Answer:

(a) a=2m/sec^2

(b) 5220 j

(c) 1740 watt

(d) 3446.66 watt

Explanation:

We have given mass m = 290 kg

Initial velocity u = 0 m/sec

Final velocity v = 6 m/sec

Time t = 3 sec

From first equation of motion

v = u+at

So a=\frac{v-u}{t}=\frac{6-0}{3}=2m/sec^2

(a) We know that force is given by

F = ma

So force will be F=290\times 2=580N

(b) From second equation of motion we know that

s=ut+\frac{1}{2}at^2=0\times 3+\frac{1}{2}\times 2\times 3^2=9m

We know that work done is given by

W = F s = 580×9 =5220 j

(c) Time is given as t = 3 sec

We know that power is given as

P=\frac{W}{t}=\frac{5220}{3}=1740Watt

(d) Time t = 1.5 sec

So P=\frac{W}{t}=\frac{5220}{1.5}=3466.66Watt

5 0
4 years ago
You observe two cars traveling in the same direction on a long, straight section of Highway 5. The red car is moving at a consta
Arte-miy333 [17]

Answer:

1)  3.66 s

2) 124.44 m

3) 3.12 s

Explanation:

Let's start by first listing down the information in the question.

Red Car : 34 m/s

Blue Car: 28 m/s

Distance between them : 22 m

The difference in speed between the cars is: 34 - 28 = 6 m/s

This means that the red car is catching up to the blue car at a speed of 6 m/s.

1) We can solve this by just dividing the distance by the difference in speed. This becomes:    \frac{Distance}{Speed}= \frac{22}{6} =   3.66

Thus it takes 3.66 seconds for the red car to catch up to the blue car.

2) We know from (1) that it took 3.66 seconds for the red car to catch up. Since the speed it was travelling at is constant, we only need to multiply it by the time from (1) to get the distance.

This becomes:    Speed * Time = 34 * 3.66 = 124.44

Thus the red car travels 124.44 m before catching up to the blue car.

3) If the red car starts to accelerate the moment we see it, the time taken to get to the blue car will be less than before. We can find this in a simple way.

We can use the motion equation : s = u*t + \frac{1}{2}(a * t^2)

Here s = 22 m

We can take u as the difference in speed. u = 6 m/s

Acceleration a = (2/3) m/s^2

Substituting the these into the equation we get:

22 = 6t + \frac{1}{2}(\frac{2}{3}t^2)

Solving this for the variable 't' using the quadratic formula we get the following two answers:

t1  = 3.12 s

t2 = - 21.12 s

Since t2 is not possible, the answer is t1. This means it takes 3.12 seconds for the red car to catch up to the blue.

4 0
3 years ago
Can you guys make a three line poem with the word time
Elina [12.6K]
Time should not be messed with
for bad things could happen
so think before you act or you'll regret it
3 0
3 years ago
Read 2 more answers
Other questions:
  • An airplane flies in a loop (a circular path in a vertical plane) of radius 200 m . The pilot's head always points toward the ce
    5·1 answer
  • A girl and a boy are riding on a merry-go-round that is turning at a constant rate. The girl is near the outer edge, and the boy
    12·1 answer
  • A 35 n object is on a 25 degree incline. the force of friction up the incline is 8.0 N.
    8·1 answer
  • All objects emit radiation as a result of
    6·1 answer
  • They did a flu shot from McKinnon at 45° to the horizontal with an initial speed of 25 m/s and that is positioned at a horizonta
    11·1 answer
  • In 3 meters a person running 0.5 m/s accelerates 1.2 m/s 2. How fast were they going afterward? Choose the right equation for th
    10·1 answer
  • A player hits a ball with a bat. The action is the force of the bat against the ball.
    15·1 answer
  • HELPP PLEEEAAAAASSSEEEEWKKKKKKK!!!!!
    13·2 answers
  • A 2.0-mm-diameter glass sphere has a charge of 1.0 nC. What speed does an electron need to orbit the sphere 1.0 mm above the sur
    6·1 answer
  • How much heat energy is required to raise the temperature of 1 kilogram of steel by 10°C?
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!