1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
user100 [1]
2 years ago
7

Which of the following can be seen as a result of the earth's tilt? 1 the seasons change throughout the year. II the tides chang

e throughout the day. III daytime is longer than nighttime during the summer than during the winter. A. II and III only B. I, II, and III C. III only D. I and III only
Engineering
2 answers:
Nina [5.8K]2 years ago
5 0
Seasons change through the year!!
kompoz [17]2 years ago
3 0

Answer:

d is the correct

Explanation:

because the tides arent involved with the sun if so than only a little bit

You might be interested in
A cylinder contains 480 cm3 of loose dry sand which weighs 820 g. Under a static load of 200 kPa the volume is reduced 1%, and t
goblinko [34]

Answer:

a.

b.

c.

Explanation:

a. void  ratio is provided by the formula: e = \frac{V_{p} }{V_{s}  }

   where , V_{p} = volume of voids

                V_{s} = volume of solid grains

for loose sand, the void space = \frac{480}{480}

                                                   = 1

b. void ratio after static load = 0.1/(480)/ (480)

                                               = 0.1

c. void ratio after vibration = [480- ( 0.1 * 480) ]/ 480

                                             = 0.9

5 0
3 years ago
An operating gear box (transmission) has 350 hp at its input shaft while 250. hp are delivered to the output shaft. The gear box
True [87]

Answer:

Rate of Entropy =210.14 J/K-s

Explanation:

given data:

power delivered to input = 350 hp

power delivered to output = 250 hp

temperature of surface = 180°F

rate of entropy is given as

Rate\  of\ entropy  = \frac{Rate\ of \ heat\  released}{Temperature}

T = 180°F = 82°C = 355 K

Rate of heat = (350 - 250) hp = 100 hp = 74600 W

Rate of Entropy= \frac{74600}{355} = 210.14 J/K-s

8 0
3 years ago
Steam at 4 MPa and 350°C is expanded in an adiabatic turbine to 125kPa. What is the isentropic efficiency (percent) of this turb
guajiro [1.7K]

Answer:

\eta_{turbine} = 0.603 = 60.3\%

Explanation:

First, we will find actual properties at given inlet and outlet states by the use of steam tables:

AT INLET:

At 4MPa and 350°C, from the superheated table:

h₁ = 3093.3 KJ/kg

s₁ = 6.5843 KJ/kg.K

AT OUTLET:

At P₂ = 125 KPa and steam is saturated in  vapor state:

h₂ = h_{g\ at\ 125KPa} = 2684.9 KJ/kg

Now, for the isentropic enthalpy, we have:

P₂ = 125 KPa and s₂ = s₁ = 6.5843 KJ/kg.K

Since s₂ is less than s_g and greater than s_f at 125 KPa. Therefore, the steam is in a saturated mixture state. So:

x = \frac{s_2-s_f}{s_{fg}} \\\\x = \frac{6.5843\ KJ/kg.K - 1.3741\ KJ/kg.K}{5.91\ KJ/kg.K}\\\\x = 0.88

Now, we will find h_{2s}(enthalpy at the outlet for the isentropic process):

h_{2s} = h_{f\ at\ 125KPa}+xh_{fg\ at\ 125KPa}\\\\h_{2s} = 444.36\ KJ/kg + (0.88)(2240.6\ KJ/kg)\\h_{2s} = 2416.088\ KJ/kg

Now, the isentropic efficiency of the turbine can be given as follows:

\eta_{turbine} = \frac{h_1-h_2}{h_1-h_{2s}}\\\\\eta_{turbine} = \frac{3093.3\ KJ/kg-2684.9\ KJ/kg}{3093.3\ KJ/kg-2416.088\ KJ/kg}\\\\\eta_{turbine} = \frac{408.4\ KJ/kg}{677.212\ KJ/kg}\\\\\eta_{turbine} = 0.603 = 60.3\%

3 0
3 years ago
Consider fully developed laminar flow in a circular pipe. If the viscosity of the fluid is reduced by half by heating while the
gladu [14]

Answer:

The pressure drop across the pipe also reduces by half of its initial value if the viscosity of the fluid reduces by half of its original value.

Explanation:

For a fully developed laminar flow in a circular pipe, the flowrate (volumetric) is given by the Hagen-Poiseulle's equation.

Q = π(ΔPR⁴/8μL)

where Q = volumetric flowrate

ΔP = Pressure drop across the pipe

μ = fluid viscosity

L = pipe length

If all the other parameters are kept constant, the pressure drop across the circular pipe is directly proportional to the viscosity of the fluid flowing in the pipe

ΔP = μ(8QL/πR⁴)

ΔP = Kμ

K = (8QL/πR⁴) = constant (for this question)

ΔP = Kμ

K = (ΔP/μ)

So, if the viscosity is halved, the new viscosity (μ₁) will be half of the original viscosity (μ).

μ₁ = (μ/2)

The new pressure drop (ΔP₁) is then

ΔP₁ = Kμ₁ = K(μ/2)

Recall,

K = (ΔP/μ)

ΔP₁ = K(μ/2) = (ΔP/μ) × (μ/2) = (ΔP/2)

Hence, the pressure drop across the pipe also reduces by half of its initial value if the viscosity of the fluid reduces by half of its value.

Hope this Helps!!!

4 0
3 years ago
1. A soil core sampling tube of 4 cm diameter, 12 cm length and initial mass of 0.525 kg (sample only), was dried at 105o C and
belka [17]

Answer:

porosity = 0.07 or 7%

dry bulk density = 3.25g/cm3]

water content =

Explanation:

bulk density = dry Mass / volume of  sample

dry mass = 0.490kg = 490g

volume = πr2h = 3.142 * 2 *2 *12 = 150.8cm3

density = 490/150.8 = 3.25g/cm3

porosity = \frac{wet mass - dry mass }{wet mass} = \frac{0.525 - 0.49}{0.525} = 0.07 or 7%

water content =  \frac{wet mass - dry mass}{wet mass} = 7%

8 0
3 years ago
Read 2 more answers
Other questions:
  • Answer the following questions, and very briefly explain your answer:
    5·1 answer
  • It has been estimated that 139.2x10^6 m^2 of rainforest is destroyed each day. assume that the initial area of tropical rainfore
    12·1 answer
  • Explain why the following acts lead to hazardous safety conditions when working with electrical equipmentA) Wearing metal ring o
    11·1 answer
  • 14. Tires are rotated to
    12·2 answers
  • How many volts of electricity would it take to power up an entire city? Take Tokyo for example. Please explain!
    12·1 answer
  • Hiiiiiiiii<br> jhajwjne f f g. g g tnnjzjnsnsnend f najjwne d f nskiaksjsjsjksm
    5·1 answer
  • Help me asap I rely need help u will be my fav​
    8·2 answers
  • What is the measurment unit of permeability?​
    7·2 answers
  • How much energy in joule is added to a 12 g of sample of aluminum (c=0.897 J/g ◦C) to raise the temperature from 20 ◦C to 45 ◦C?
    14·1 answer
  • Read the passage.
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!