ANSWER
Power stroke
EXPLANATION
At the power stroke stage, the piston is forced to move down by the expanding gases as both intake valve and exhaust valve are closed.
A spark from the spark plug contributes to ignition of the compressed fuel air mixture to released energy to perform work.
Answer:
Original temperature (T1) = - 37.16°C
Explanation:
Given:
Gas pressure (P1) = 2.75 bar
Temperature (T2) = - 20°C
Gas pressure (P2) = 1.48 bar
Find:
Original temperature (T1)
Computation:
Using Gay-Lussac's Law
⇒ P1 / T1 = P2 / T2
⇒ 2.75 / T1 = 1.48 / (-20)
⇒ T1 = (2.75)(-20) / 1.48
⇒ T1 = -55 / 1.48
⇒ T1 = - 37.16°C
Original temperature (T1) = - 37.16°C
Answer:
More oxygen is needed to produce more energy, and more carbon dioxide waste must be removed from the body.
Explanation:
Oxygen helps our cells work harder by breaking down the nutrients we get from food like sugars. With sugars and oxygen, our cells can create the energy they need to function. This process also produces carbon dioxide. The carbon dioxide produced is a waste product and needs to be removed. During exercise, your body needs more energy, which means your tissues consume more oxygen than they do at rest. Consuming more oxygen means you will also produce more carbon dioxide because your metabolic rate is elevated. The lungs and respiratory system allow oxygen in the air to be taken into the body, while also letting the body get rid of carbon dioxide in the air breathed out. When you breathe in, the diaphragm moves downward toward the abdomen, and the rib muscles pull the ribs upward and outward.
Answer:
The answer remains the same. The total amount of energy stays the same because the 1st Law of Thermodynamics states that energy can neither be created nor destroyed, it can only change forms. So the chemical energy is just being converted into heat and light.
Explanation:
hope this helps...