Answer:
0.42°
Explanation:
Using Snell's law of refraction which states that the ratio of the angle of sin of incidence to angle of sine of refraction is equal to a constant for a given pair of media. Mathematically,
Sin(i)/sin(r) = n
n is the refractive index of the medium
FOR VIOLET LIGHT:
n = 2.46
i = 51°
r = ?
To get r, we will use the Snell's law formula.
2.46 = sin51°/sinr
Sinr = sin51°/2.46
Sinr = 0.316
r = sin^-1(0.316)
rv = 18.42°
FOR RED LIGHT:
n = 2.41
i = 51°
r = ?
To get r, we will use the Snell's law formula.
2.41 = sin51°/sinr
Sinr = sin51°/2.41
Sinr = 0.323
r = sin^-1(0.323)
rd = 18.84°
The angular separation between these two colors of light in the refracted ray will be the difference between there angle of refraction.
Angular separation = rd - rv
= 18.84° - 18.42°
= 0.42°
Supposedly there is life on Mars but it’s early to say for sure
The answer would be stay because the surface is flat so it will stay!
Answer:
Resultant force, R = 10 N
Explanation:
It is given that,
Force acting along +x direction, 
Force acting along +y direction, 
Both the forces are acting on a point object located at the origin. Let the resultant force of the object is given by R. So,

Here 


R = 10 N
So, the resultant force on the object is 10 N. Hence, this is the required solution.
Answer:

Explanation:
<u>Instant Acceleration</u>
The kinetic magnitudes are usually related as scalar or vector equations. By doing so, we are assuming the acceleration is constant over time. But when the acceleration is variable, the relations are in the form of calculus equations, specifically using derivatives and/or integrals.
Let f(t) be the distance traveled by an object as a function of the time t. The instant speed v(t) is defined as:

And the acceleration is

Or equivalently

The given height of a projectile is

Let's compute the speed

And the acceleration

It's a constant value regardless of the time t, thus
