Answer:
B. decreases while his angular speed remains unchanged.
Explanation:
His angular speed will always be the same as the wheel's angular speed, which remains constant as it's in uniform motion. As for linear speed, which is defined as the product of angular speed and distance r to the center of rotation, and his distance to center is decreasing, his linear speed must be decreasing as well.
Answer:
The total number of atoms does not change, so mass is conserved in the reaction.
Explanation:
If you like my answer than please mark me brainliest thanks
What’s the weight and how high is the clif
B is the answer you need and i honestly got this question on a middle school test
you must be in different area then me
Answer:
54 N
Explanation:
Draw a free body diagram. There are four forces acting on the balloon. Buoyant force pushing the balloon up, gravity pulling the helium down, gravity pulling the balloon skin down, and gravity pulling the load down.
Apply Newton's second law:
∑F = ma
B − Wh − Wb − L = ma
When the load is at a maximum, the acceleration is 0:
B − Wh − Wb − L = 0
B − Wh − Wb = L
B − mh g − Wb = L
The mass of the helium is its density times its volume:
B − ρh Vh g − Wb = L
Buoyant force is defined as B = ρVg, where ρ is the density of the displaced fluid (in this case, air), V is the volume of the displaced fluid, and g is acceleration of gravity. Since the volume of displaced air = the volume of the helium:
ρa V g − ρh V g − Wb = L
(ρa − ρh) V g − Wb = L
Given that ρa = 0.90 kg/m³, ρh = 0.178 kg/m³, V = 20 m³, g = 9.8 m/s², and Wb = 88 N:
(0.9 − 0.178) (20) (9.8) − (88) = L
L = 53.5 N
Rounded to 2 sig-figs, the maximum load that can be supported is 54 N.