Answer:
Final [B] = 1.665 M
Explanation:
3A + 4B → C + 2D
Average rection rate = 3[A]/Δt = 4[B]/Δt = [C]/Δt = 2[D]/Δt
0.05600 M/s = 4 [B]/ 2.50 s
[B] = 0.035 M (concentration of B consumed)
Final [B] = initial [B] - consumed [B]
Final [B] = 1.700 M - 0.035 M
Final [B] = 1.665 M
Answer:
Coefficient in front of the
in the balanced equation - 1
Explanation:
The unbalanced Chemical equation is shown below as:-
On the left hand side,
There are 1 boron atom and 3 fluorine atoms and 1 sodium and hydrogen atoms.
On the right hand side,
There are 2 boron atoms and 6 hydrogen atoms and 1 sodium and fluorine atoms.
Thus,
leftside,
must be multiplied by 2 to balance boron and right side,
must be multiplied by 6 to balance fluorine. Left side,
must be multiplied by 6 to balance sodium and hydrogen atoms.
Thus, the balanced reaction is:-
<u>Coefficient in front of the
in the balanced equation - 1</u>
Answer:
1
Explanation:
outershell atoms of an element are also known as valency of that element
so the valency and number of elctron in the outershell of a sodium atom is +1.
hope this will help
mark me as brilliant
Answer: The correct answer is -297 kJ.
Explanation:
To solve this problem, we want to modify each of the equations given to get the equation at the bottom of the photo. To do this, we realize that we need SO2 on the right side of the equation (as a product). This lets us know that we must reverse the first equation. This gives us:
2SO3 —> O2 + 2SO2 (196 kJ)
Remember that we take the opposite of the enthalpy change (reverse the sign) when we reverse the equation.
Now, both equations have double the coefficients that we would like (for example, there is 2S in the second equation when we need only S). This means we should multiply each equation (and their enthalpy changes) by 1/2. This gives us:
SO3 —>1/2O2 + SO2 (98 kJ)
S + 3/2O2 —> SO3 (-395 kJ)
Now, we add the two equations together. Notice that the SO3 in the reactants in the first equation and the SO3 in the products of the second equation cancel. Also note that O2 is present on both sides of the equation, so we must subtract 3/2 - 1/2, giving us a net 1O2 on the left side of the equation.
S + O2 —> SO2
Now, we must add the enthalpies together to get our final answer.
-395 kJ + 98 kJ = -297 kJ
Hope this helps!
Answer:
2 electrons
Explanation:
Oxygen has 6 valence electrons and to be stable it needs 8. That means it needs 2 more electrons to have a full octet.