Answer:
Option D. 230 J
Explanation:
We'll begin by calculating the temperature change of the iron. This can be obtained as follow:
Initial temperature (T₁) = 50 °C
Final temperature (T₂) = 75 °C
Change in temperature (ΔT) =?
ΔT = T₂ – T₁
ΔT = 75 – 50
ΔT = 25 °C
Thus, the temperature change of the iron is 25 °C.
Finally, we shall determine the amount of heat energy used. This can be obtained as follow:
Mass (M) = 20 g
Change in temperature (ΔT) = 25 °C
Specific heat capacity (C) = 0.46 J/gºC
Heat (Q) =?
Q = MCΔT
Q = 20 × 0.46 × 25
Q = 230 J
Thus, the amount of heat used was 230 J
I would say B but I am not sure so sorry if it is wrong!!
Answer:
5 000 000 (5 million atoms)
Explanation:
Let us assume that a vanadium atom has a spherical shape.
diameter of a sphere = 2 x radius of the sphere
Thus,
Radius of a vanadium atom = 130 pm
= 130 x
m
The diameter of a vanadium atom = 2 x radius
= 2 x 130 x
= 260 x
m
Given a distance of 1.30 mm = 1.30 x
m,
The number of vanadium atoms required to span the distance = 
= 5000000
Therefore, the number of vanadium atom that would span a distance of 1.30 mm is 5 million.
I think the correct answer from the choices listed above is option A. In the modern periodic table, elements are arranged according to increasing <span>atomic number. The atomic number represents the number of protons present for a specific atom.</span>