True becuase dew is coming out of the air which if you look at a glass of water it has condensation on it becuase it is hot
Answer:
Engineering is all about solving problems using math, science, and technical knowledge. And engineers have solved a lot of problems in the world by designing and building various technologies. We have everything from machines that can breathe for you in hospitals to suspension bridges to computers we use every day. All of these things were once designed by engineers using the engineering design process.
Explanation:
Answer:
Once three protons have entered the matrix space, there is enough energy in the ATP synthase complex to synthesize one ATP. In this way, the energy in the hydrogen ion gradient is used to make ATP. ... The mitochondrial hydrogen ion gradient is generated as electrons pass through three membrane complexes.
Answer:
2.03
Explanation:
Let's <u>assume we have 1 L of the solution</u>:
- There would be 2.07 ethylene glycol moles.
- The solution would weigh (1000 mL * 1.02 g/mL) = 1020 g.
With that information we can <u>calculate the molality</u>:
- molality = moles of solute / kg of solvent
- molality = 2.07 moles / (1020 ÷ 1000) = 2.03 m
Keep in mind that this is only an estimate, as we used the kg of the solution and not of the solvent.
1 mol of any gas or mix of gases at STP conditions will have a volume of 22.4 L. Since the problem doesn’t said what are the conditions I will asume that are STP condition and the volume of one mole of the mix will have a volume of 22.4 L.
You may know that density is
D=m/v
In one mole of air I will have 80% of Nitrogen (N2) and 20% oxygen (O2).
So the mass of one mole of air will be
14 x2x0.80+16x2x0.20 = 22.4 g + 6.4 g = 28.8 g
D= 28.8/22.4 = 1.28 g/L
Of course if the temperature is higher the density will be smaller because the volume of one mole will be bigger and viceversa if the temperature decrease. Also if the pressure is different than one atm the volume of a mol will change.