Your answer can be anything in the form y = mx+8 where you replace m with any real number.
You start with y = mx+b, and then replace the b with the y intercept 8.
The y intercept is where the polynomial crosses the y axis.
The value of m does not matter. So you could have y = 2x+8 or y = 3x+8 for instance. Replace m with whatever your favorite number is.
Answer:
Step-by-step explanation:
divide 33.25/475 and you'll get 7 cents per flier
<h3>Original Equation:</h3>

<h3>Steps:</h3>
<em>*To solve for a variable, isolate the desired variable onto one side.</em>
Firstly, we want to add 1/3 to each side however -5/6 and 1/3 do not share the same denominator, and we want them to have that and we can do that by finding the LCD, or lowest common denominator. To find the LCD, list the multiples of 6 and 3 and the lowest multiple that they share is their LCD. In this case, their LCD is 6. Multiply -1/3 by 2/2:

Now that we have common denominators, add both sides by 2/6:

Next, you want to cancel out 2 to isolate z. Usually, one would divide both sides by 2, however remember that <u>dividing by a number is the same as multiplying by it's reciprocal.</u> To find a number's reciprocal, flip the numerator and denominator around. In this case, since 2 is a <em>whole number</em> this means that the denominator is 1. In this case: 2/1 would become 1/2. Multiply both sides by 1/2:

<h3>Final Answer:</h3>
<u>Your final answer is z = -1/4.</u>
Answer:

Step-by-step explanation:
Hi there!
<u>What we need to know:</u>
- Linear equations are typically organized in slope-intercept form:
where <em>m</em> is the slope and <em>b</em> is the y-intercept - Parallel lines always have the same slope (<em>m</em>)
<u>Determine the slope (</u><em><u>m</u></em><u>):</u>
<u />
<u />
The slope of the given line is
, since it is in the place of <em>m</em> in y=mx+b. Because parallel lines always have the same slope, the slope of a parallel line would also be
. Plug this into y=mx+b:

<u>Determine the y-intercept (</u><em><u>b</u></em><u>):</u>

To find the y-intercept, plug in the given point (6,14) and solve for <em>b</em>:

Therefore, the y-intercept of the line is 22. Plug this back into
:

I hope this helps!