Answer:
d. R4
Explanation:
Generally, the flow of current is always from the positive sign to the negative sign. In the resistors R1, R2, and R3, the direction of flow of current is from the positive sign to the negative sign. However, in the resistor R4, the direction of the flow of current is different from the conventional method. Therefore, the resistor R4 is marked wrongly.
Answer:
The resultant force would (still) be zero.
Explanation:
Before the 600-N force is removed, the crate is not moving (relative to the surface.) Its velocity would be zero. Since its velocity isn't changing, its acceleration would also be zero.
In effect, the 600-N force to the left and 200-N force to the right combines and acts like a 400-N force to the left.
By Newton's Second Law, the resultant force on the crate would be zero. As a result, friction (the only other horizontal force on the crate) should balance that 400-N force. In this case, the friction should act in the opposite direction with a size of 400 N.
When the 600-N force is removed, there would only be two horizontal forces on the crate: the 200-N force to the right, and friction. The maximum friction possible must be at least 200 N such that the resultant force would still be zero. In this case, the static friction coefficient isn't known. As a result, it won't be possible to find the exact value of the maximum friction on the crate.
However, recall that before the 600-N force is removed, the friction on the crate is 400 N. The normal force on the crate (which is in the vertical direction) did not change. As a result, one can hence be assured that the maximum friction would be at least 400 N. That's sufficient for balancing the 200-N force to the right. Hence, the resultant force on the crate would still be zero, and the crate won't move.
Answer: a and d
Explanation: A.) the power lines themselves
B.) the wooden pole that supports the lines
C.) the rubber soles on the worker’s boots
D.) the metal tools the worker uses
E.) the wooden ladder leaning against the lines
Answer:
The net force acting on the body is 10N directed to the left.
Explanation:
Magnitude of force to the right = 5N
Magnitude of force to the left = 15N
Net force acting on the object and in what direction;
Solution:
It is the vector sum of all forces acting on a body. This net force is the single force that will replace the forces acting on a body;
For the problem;
Net force = Force to the left + Force to the right
Let us take left to be negative and right to be positive;
Force to the left = -15N
Net force = -15N + 5N = -10N
The net force acting on the body is 10N directed to the left.