Answer:
9.9652g of water
Explanation:
The establishment of the liquid-vapor equilibrium occurs when the vapour of water is equal to vapour pressurem 26.7 mmHg. Using gas law it is possible to know how many moles exert that pressure, thus:
n = PV / RT
Where P is pressure 26,7 mmHg (0.0351atm), V is volume (1.350L), R is gas constant (0.082 atmL/molK) and T is temperature (27°C + 273,15 = 300.15K)
Replacing:
n = 0.0351atm×1.350L / 0.082atmL/molK×300.15K
n = 1.93x10⁻³ moles of water are in gaseous phase. In grams:
1.93x10⁻³ moles × (18.01g / 1mol) = <u><em>0.0348g of water</em></u>
<u><em /></u>
As the initial mass of water was 10g, the mass of water that remains in liquid phase is:
10g - 0.0348g = <em>9.9652g of water</em>
<em />
I hope it helps!
25m³.
500mL = 500cm³
25m³ = 2,500cm³
5.5x9 = 49.5(cm³)
25m³ is the smallest among the others.
Answer:
To calculate molarity, divide the number of moles of solute by the volume of the solution in liters. If you don't know the number of moles of solute but you know the mass, start by finding the molar mass of the solute, which is equal to all of the molar masses of each element in the solution added together.
Explanation:
try starting with 35.0 and dived it by the volume
Answer:
Yes
Explanation:
Masses for the three subatomic particles can be expressed in amu (atomic mass units) or grams. For simplicity, we will use the amu unit for the three subatomics. Both neutrons and protons are assigned as having masses of 1 amu each.