Answer:
The molarity of urea in this solution is 6.39 M.
Explanation:
Molarity (M) is <em>the number of moles of solute in 1 L of solution</em>; that is

To calculate the molality, we need to know the number of moles of urea and the volume of solution in liters. We assume 100 grams of solution.
Our first step is to calculate the moles of urea in 100 grams of the solution,
using the molar mass a conversion factor. The total moles of 100g of a 37.2 percent by mass solution is
60.06 g/mol ÷ 37.2 g = 0.619 mol
Now we need to calculate the volume of 100 grams of solution, and we use density as a conversion factor.
1.032 g/mL ÷ 100 g = 96.9 mL
This solution contains 0.619 moles of urea in 96.9 mL of solution. To express it in molarity, we need to calculate the moles present in 1000 mL (1 L) of the solution.
0.619 mol/96.9 mL × 1000 mL= 6.39 M
Therefore, the molarity of the solution is 6.39 M.
Number 2 lower entropy and higher entropy
Answer:
2= its color
Explanation:
Transition elements are present in the middle of periodic table. These are d-block elements.
These are 38 elements.
All transition elements have partially filled d orbitals.
They showed color in compound because of d-d transition.
During the d-d transition electron absorbed the energy and emit the reminder energy. The emission is usually in the form of color light.
The color of ion is complementary to the absorbed color.
The transition elements are used as a catalyst in industries such as polymer, petroleum industries.
They are ductile, conduct heat and electricity.
The idea of electric field was presented by Michael Faraday. The electrical field constrain acts between two charges, similarly that the gravitational field compel acts between two masses.
Which way can heat never flow?
The wrong answer is a,c,d
The correct answer is b. Cold to Hot