Answer:
k1 + k2
Explanation:
Spring 1 has spring constant k1
Spring 2 has spring constant k2
After being applied by the same force, it is clearly mentioned that spring are extended by the same amount i.e. extension of spring 1 is equal to extension of spring 2.
x1 = x2
Since the force exerted to each spring might be different, let's assume F1 for spring 1 and F2 for spring 2. Hence the equations of spring constant for both springs are
k1 = F1/x -> F1 =k1*x
k2 = F2/x -> F2 =k2*x
While F = F1 + F2
Substitute equation of F1 and F2 into the equation of sum of forces
F = F1 + F2
F = k1*x + k2*x
= x(k1 + k2)
Note that this is applicable because both spring have the same extension of x (I repeat, EXTENTION, not length of the spring)
Considering the general equation of spring forces (Hooke's Law) F = kx,
The effective spring constant for the system is k1 + k2
The force vector that has a magnitude of 12.0 N. and is oriented 60° to the left of the (y) has the followings components:
To solve this exercise the formulas and procedures we will use are:
- v(x) = v * cosine (angle)
- v(y) = v * sine (angle).
Where:
- v= magnitude of the vector
- v(x) = component of the vector on the (x) axis
- v(y) = component of the vector on the (y) axis
- angle = angle
Information about the problem:
- angle = 60º
- v = 12.0 N
- v(x)= ?
- v(y)= ?
Applying the formula of the component of the vector in the (x) axis we have:
v(x) = v * cosine (angle).
v(x) = 12.0 N * cosine (60º)
v(x) =6 N
Applying the formula of the component of the vector in the (y) axis we have:
v(y) = v * sine (angle)
v(y) = 12.0 N * sine (60º)
v(y) = 10.39 N
<h3>What is a vector?</h3>
It can be said to be a straight line described by a point (a) and (b) that has direction and sense.
Learn more about vector at: brainly.com/question/2094736
#SPJ4
Answer:
B. 6HgO → 6Hg + 3O
Explanation:
A decomposition reaction is a reaction in which a single reactant is broken down into 2 or more products.
To solve this problem it is necessary to apply the concepts related to the Force since Newton's second law, as well as the concept of Electromagnetic Force. The relationship of the two equations will allow us to find the magnetic field through the geometric relations of density and volume.

Where,
B = Magnetic Field
I = Current
L = Length
<em>Note:
is a direct adaptation of the vector relation
</em>
From Newton's second law we know that the relation of Strength and weight is determined as

Where,
m = Mass
g = Gravitational Acceleration
For there to be balance the two forces must be equal therefore

Our values are given as,
Diameter 
Radius 
Magnetic Field 
From the relationship of density another way of expressing mass would be

At the same time the volume ratio for a cylinder (the shape of the wire) would be

Replacing this two expression at our first equation we have that:



Re-arrange to find I


We have for definition that the Density of copper is
, gravity acceleration is
and the values of magnetic field (B) and the radius were previously given, then:


The current is too high to be transported which would make the case not feasible.
Answer:
True
Explanation:
An electric field is a region around a charged particle or object within which a force would be exerted on other charged particles or objects.