Answer:
= 85.7 ° C
Explanation:
For this exercise we will use the calorimetry heat ratios, let's start with the heat lost by the evaporation of coffee, since it changes from liquid to vapor state
Q₁ = m L
Where m is the evaporated mass (m = 2.00 103-3kg) and L is 2.26 106 J / kg, where we use the latent heat of the water
Q₁ = 2.00 10⁻³ 2.26 10⁶
Q1 = 4.52 10³ J
Now the heat of coffee in the cup, which does not change state is
Q coffee = M
(
-
)
Since the only form of energy transfer is terminated, the heat transferred is equal to the evaporated heat
Qc = - Q₁
M ce (
-
) = - Q₁
The coffee dough left in the cup after evaporation is
M = 250 -2 = 248 g = 0.248 kg
-Ti = -Q1 / M
= Ti - Q1 / M 
Since coffee is essentially water, let's use the specific heat of water,
= 4186 J / kg ºC
Let's calculate
= 90.0 - 4.52 103 / (0.248 4.186 103)
= 90- 4.35
= 85.65 ° C
= 85.7 ° C
Spectroscopy — the use of light from a distant object to work out the object is made of — could be the single-most powerful tool astronomers use, says Professor Fred Watson from the Australian Astronomical Observatory. ... "It lets you see the chemicals being absorbed or emitted by the light source.
Answer:
4.37 * 10^-4 J
Explanation:
Energy stored :
mgΔl / 2
m = mass = 10kg ; g = 9.8m/s² ; r = cross sectional Radius = 1cm = 1 * 10-2 m
Δl = mgl / πr²Y
Y = Youngs modulus = Y=3.5 ×10^10 ; l = Length = 1m
Δl = (10 * 9.8 * 1) / π * (1 * 10^-2)²* 3.5 ×10^10
Δl = 98 / 3.5 * π * 10^6
Δl = 0.00000891267
Energy stored :
mgΔl / 2
(10 * 9.8 * 0.00000891267) / 2
= 0.00043672083 J
4.37 * 10^-4 J
Answer: B
Explanation:
Limiting the maximum current through the bulb. This will help in preserving or improving the bulb's lifetime and also this won't have an effect on the brightness of the bulb as brightness is affected by the average value. Although brightness is a factor of current, reducing the maximum current won't have any bearing on the average current the bulb is getting.
Answer:

Explanation:
Given two mass on an incline code
and
and an angle of inclination
.
. Assume that
is the weight being pulled up and
the hanging weight.
-The equations of motion from Newton's Second Law are:
where a is the acceleration.
#Substituting for
(tension) gives:

#and solving for 
which is the system's acceleration.