Answer:
Disinfecting (or boiling)
Explanation:
They'd want to disinfect everything so that it is germless. Boiling is a possible answer as well because you can boil certain things to rid them of germs.
Answer: The given statement is true.
Explanation:
According to the Dalton's law, total pressure of a mixture of gases that do not react with each other is equal to the partial pressure exerted by each gas.
The relationship is as follows.

or, 
where,
....... = partial pressure of individual gases present in the mixture
Also, relation between partial pressure and mole fraction is as follows.

where,
= mole fraction
Thus, we can conclude that the statement Dalton's law of partial pressures states that the total pressure exerted by a mixture of gases is the sum of the pressures exerted independently by each gas in the mixture, is true.
Answer:
Hydrofluoric acid.
Explanation:
To know which of the acid is the strongest, let us determine the pka of each acid. This is illustrated below:
1. Acetic acid
Ka = 1.8x10^-5
pKa =..?
pKa = –logKa
pKa = –Log 1.8x10^-5
pKa = 4.74
2. Benzoic acid
Ka = 6.5x10^-5
pKa =..?
pKa = –logKa
pKa = –Log 6.5x10^-5
pKa = 4.18
3. Hydrofluoric acid.
Ka = 6.8x10^-4
pKa =..?
pKa = –logKa
pKa = –Log 6.8x10^-4
pKa = 3.17
4. Hypochlorous acid
Ka = 3.0x10^-8
pKa =..?
pKa = –logKa
pKa = –Log 3.0x10^-8
pKa = 7.52
Note: the smaller the pKa value, the stronger the acid.
The pka of the various acids as calculated above is given below:
Acid >>>>>>>>>>>>>>>>>> pKa
1. Acetic acid >>>>>>>>>> 4.74
2. Benzoic acid >>>>>>>> 4.18
3. Hydrofluoric acid >>>> 3.17
4. Hypochlorous acid >> 7.52
From the above illustration, we can see that hydrofluoric acid has the lowest pKa value. Therefore, hydrofluoric acid is the strongest among them.
The easiest way is to use the Law of Gay-Lussac. This law states that there is a direct relation between the temperature in Kelvin of a gas and the pressure.
Then, namig p the pressure and T the temperature in Kelvin and using subscripts for every state:
p/T is constant ==> p_1 / T_1 = p_2/T_2
From which you obtain:
p_2 = [p_1 / T_1] * T_2
T_1 = 33.0 + 273.15 = 306.15 K
T _2 = 21.4 + 273.15 = 294.55 K
p_1 = 1014 kPa
p_2 = 1014 kPa * 294.55 K / 306.15 K = 975.6 kPa