Answer:
xf = 5.68 × 10³ m
yf = 8.57 × 10³ m
Explanation:
given data
vi = 290 m/s
θ = 57.0°
t = 36.0 s
solution
firsa we get here origin (0,0) to where the shell is launched
xi = 0 yi = 0
xf = ? yf = ?
vxi = vicosθ vyi = visinθ
ax = 0 ay = −9.8 m/s
now we solve x motion: that is
xf = xi + vxi × t + 0.5 × ax × t² ............1
simplfy it we get
xf = 0 + vicosθ × t + 0
put here value and we get
xf = 0 + (290 m/s) cos(57) (36.0 s)
xf = 5.68 × 10³ m
and
now we solve for y motion: that is
yf = yi + vyi × t + 0.5 × ay × t
² ............2
put here value and we get
yf = 0 + (290 m/s) × sin(57) × (36.0 s) + 0.5 × (−9.8 m/s2) × (36.0 s) ²
yf = 8.57 × 10³ m
<span>The magnitude of the rock is equal to g. After the rock is released, there are no more forces acting on it, yet gravity remains. The initial inputs, on a bridge, at an angle of 30 deg below horizontal do not matter after the release.</span>
Answer:
The answer is 34.119m
Explanation:
You need to pay attention to the word "uniformly". It means there is no acceleration thus the physics of this problem respond to the uniform rectilinear motion equations:
- Xf = Xo + vt
- v = constant
- a = 0
where:
- v = velocity (speed)
- t = time
- a = acceleration
Xf = 0 + (15.3)(2.23)
Xf = 34.119m
The answer is 179J let me know if you need the work
A) voltage available to each light remains constant regardless of the number of lights that are on
I took the test