<span>To find the volume of the plate without accounting for the hole firstly
V = (15.0 cm)(12.5 cm)(0.250 cm) = 46.875 cm^3
and the volume of the hole is
(pi)(1.25 cm)^2(0.250 cm) = 1.2272 cm^3
we will subtract the volume of the hole from the rest 45.648 cm^3
the multiply this by the density of the alloy to find the mass
(8.80 g/cm^3)(45.648 cm^3) = 401.701 g.
0.044% of this is Si, so (0.00044)(401.701 g) = 0.17675 g is silicon.
by the number of atoms and using average atomic mass of silicon and Avogadro's number to find the number of silicon atoms:
(0.17675 g)(1 mol/28.0855 g)(6.022E23 atoms/1 mol) =3.794E21atoms of Si
3.10% of these are Si-30:(0.0310)(3.794E18 atoms)=1.176E20 atoms of Si-30 and with two significant figures, 1.2E20 atoms.
hope this helps
</span>
The deepest part of the ocean is the Marianas Trench, where the water pressure is 1,000 times that of which is found at sea level.
Answer:
1) ΔG°r(298 K) = - 28.619 KJ/mol
2) ΔG°r will decrease with decreasing temperature
Explanation:
- CO(g) + H2O(g) → H2(g) + CO2(g)
1) ΔG°r = ∑νiΔG°f,i
⇒ ΔG°r(298 K) = ΔG°CO2(g) + ΔG°H2(g) - ΔG°H2O(g) - ΔG°CO(g)
from literature, T = 298 K:
∴ ΔG°CO2(g) = - 394.359 KJ/mol
∴ ΔG°CO(g) = - 137.152 KJ/mol
∴ ΔG°H2(g) = 0 KJ/mol........pure substance
∴ ΔG°H2O(g) = - 228.588 KJ/mol
⇒ ΔG°r(298 K) = - 394.359 KJ/mol + 0 KJ/mol - ( - 228.588 KJ/mol ) - ( - 137.152 KJ7mol )
⇒ ΔG°r(298 K) = - 28.619 KJ/mol
2) K = e∧(-ΔG°/RT)
∴ R = 8.314 E-3 KJ/K.mol
∴ T = 298 K
⇒ K = e∧(-28.619/(8.314 E-3)(298) = 9.624 E-6
⇒ ΔG°r = - RTLnK
If T (↓) ⇒ ΔG°r (↓)
assuming T = 200 K
⇒ ΔG°r(200 K) = - (8.314 E-3)(200)Ln(9.624E-3)
⇒ ΔG°r (200K) = - 19.207 KJ/mol < ΔG°r(298 K) = - 28.619 KJ/mol
Answer:
yh
Explanation:
welcome.This place is for learning
Answer:
A pure solid is heated and turns into a pure liquid.
Explanation:
No colour change recorded, only change of state, hence this is a physical change - physical changes I.e. change of state and temperature are not chemical reactions.