Answer:
<h2>8.0995×10^-21 kgms^-1</h2>
Explanation:
Mass of proton :

Speed of Proton:

Linear Momentum of a particle having mass (m) and velocity (v) :

Magnitude of momentum :

Frome equation (2), magnitude of linear momentum of the proton :

The trickiest part of this problem was making sure where the Yakima Valley is.
OK so it's generally around the city of the same name in Washington State.
Just for a place to work with, I picked the Yakima Valley Junior College, at the
corner of W Nob Hill Blvd and S16th Ave in Yakima. The latitude in the middle
of that intersection is 46.585° North. <u>That's</u> the number we need.
Here's how I would do it:
-- The altitude of the due-south point on the celestial equator is always
(90° - latitude), no matter what the date or time of day.
-- The highest above the celestial equator that the ecliptic ever gets
is about 23.5°.
-- The mean inclination of the moon's orbit to the ecliptic is 5.14°, so
that's the highest above the ecliptic that the moon can ever appear
in the sky.
This sets the limit of the highest in the sky that the moon can ever appear.
90° - 46.585° + 23.5° + 5.14° = 72.1° above the horizon .
That doesn't happen regularly. It would depend on everything coming
together at the same time ... the moon happens to be at the point in its
orbit that's 5.14° above ==> (the point on the ecliptic that's 23.5° above
the celestial equator).
Depending on the time of year, that can be any time of the day or night.
The most striking combination is at midnight, within a day or two of the
Winter solstice, when the moon happens to be full.
In general, the Full Moon closest to the Winter solstice is going to be
the moon highest in the sky. Then it's going to be somewhere near
67° above the horizon at midnight.
Answer:
25000 V
Explanation:
The formula for potential is
V = Kq/r
Potential at B due to the charge placed at origin O
V1 = K q / OB

V1 = 10000 V
Potential at B due to the charge placed at A
V2 = K q / AB

V2 = 15000 V
Total potential at B
V = V1 + V2 = 10000 + 15000 = 25000 V
Answer:
Option (d) is correct.
Explanation:
Work done is given by :
W = Fd, where F is force and d is displacement
Unit of work done :
The SI unit of force is Newton (N) and that of displacement is meter (m). So, the unit of work done is N-m. It is call Joule. It means that the unit of work done is Joule.
Power is given by rate at which the work is done. It is given by :
P = W/t, W is work done and t is time
Unit of power:
Unit of work is Joule (J) and that of time is second (s). It means that the unit of power is Watt and it is equal to Joule/second
Hence, the correct option is (d) "The unit for work is a joule. The unit for power is a watt, which is a joule per second".