Answer:
simple
Explanation:
<h3>CONCAVE MIRRORS AND LENSES</h3>
<h3>f= negative</h3>
<h3>CONVEX MIRRORS AND LENSES</h3><h3 /><h3>f= positive</h3>
<h3>PLEASE FOLLOW ME AND MARK IT BRAINLIEST</h3>
Answer:
ξ = 0.00845020162 V or 8.4 mV
Explanation:
Magnetic flux measures the total magnetic field that passes through a known area. Magnetic flux describe the effect of magnetic field in a given area. Mathematically,
magnetic flux (Ф) = BA cos ∅
where
A = test area
B = magnetic field
before the flip
Ф = Bπr²N
N = number of turn
magnitude of induced emf = N |ΔФ/Δt|
ξ = 2Nπr²B/dt
ξ = 2 × 22 × π × (1.02/2)² × 0.000047/0.2
ξ = 44 × π × 0.51² × 0.000047/0.2
ξ = 44 × π × 0.2601 × 0.000047/0.2
ξ = 0.0005378868 × 3.142/0.2
ξ = 0.00169004032/0.2
ξ = 0.00845020162 V or 8.4 mV
Answer:
it means that velocity of a body rises by 9.8m/s each second if the air resistance is nrelated
mark me
Answer:
Gravitational potential energy is energy an object possesses because of its position in a gravitational field. Since the force required to lift it is equal to its weight, it follows that the gravitational potential energy is equal to its weight times the height to which it is lifted.
Answer:
The answer to the question is
The roller coaster will reach point B with a speed of 14.72 m/s
Explanation:
Considering both kinetic energy KE = 1/2×m×v² and potential energy PE = m×g×h
Where m = mass
g = acceleration due to gravity = 9.81 m/s²
h = starting height of the roller coaster
we have the given variables
h₁ = 36 m,
h₂ = 13 m,
h₃ = 30 m
v₁ = 1.00 m/s
Total energy at point 1 = 0.5·m·v₁² + m·g·h₁
= 0.5 m×1² + m×9.81×36
=353.66·m
Total energy at point 2 = 0.5·m·v₂² + m·g·h₂
= 0.5×m×v₂² + 9.81 × 13 × m = 0.5·m·v₂² + 127.53·m
The total energy at 1 and 2 are not equal due to the frictional force which must be considered
Total energy at point 2 = Total energy at point 1 + work done against friction
Friction work = F×d×cosθ = (
× mg)×60×cos 180 = -117.72m
0.5·m·v₂² + 127.53·m = 353.66·m -117.72m
0.5·m·v₂² = 108.41×m
v₂² = 216.82
v₂ = 14.72 m/s
The roller coaster will reach point B with a speed of 14.72 m/s