The solution for the problem is:
1 Watt = 1 Joule per second
1 Watt*second = 1 Joule
a Kilowatt is 1,000 Watts
an hour is 60 seconds times 60 minutes or 3,600 seconds
a Kilowatt * hour is 1,000 Watts in 3,600 seconds
15 W*h = 15,000 Watt*hour = 15,000 Watt * 3,600 seconds = 54,000,000
Watt*second
54,000,000 Watt*second = ? Joules
54,000,000 Joules / second = 54,000,000 Watts
Answer:
The magnitude of gravitational force between two masses is
.
Explanation:
Given that,
Mass of first lead ball, 
Mass of the other lead ball, 
The center of a large ball is separated by 0.057 m from the center of a small ball, r = 0.057 m
We need to find the magnitude of the gravitational force between the masses. It is given by the formula of the gravitational force. It is given by :

So, the magnitude of gravitational force between two masses is
. Hence, this is the required solution.
Johann Strauss II
hope this helps
Answer: When a liquid or gas is heated, the molecules move faster, bump into each other, and spread apart. Because the molecules are spread apart, they take up more space. ... The molecules move more slowly and take up less space. Therefore temperature can affect density.
Explanation:
Answer: It's hard to say without characterizing the collision. But it will be either A if the collision is totally in-elastic, or B if the collision is totally elastic. It could be anywhere in between for partially elastic collisions.
Explanation:
momentum is conserved, so initial system momentum will be left to right.
The velocity of the center of mass is 50(5) / 550 = 0.4545... m/s
In an elastic collision, the lead ball will move off at twice that speed or 0.91 m/s to the right.
The steel ball will bounce back and move away at 0.91 - 5 = -4.1 m/s . The negative sign indicates the steel ball has reversed course and has negative momentum
In a totally in-elastic collision, both balls would move to the right at 0.45 m/s. The steel ball will still have positive momentum.