Rydberg formula is given by:
![\frac{1}{\lambda } = R_{H}\times (\frac{1}{n_{1}^{2}}-\frac{1}{n_{2}^{2}} )](https://tex.z-dn.net/?f=%5Cfrac%7B1%7D%7B%5Clambda%20%7D%20%3D%20R_%7BH%7D%5Ctimes%20%28%5Cfrac%7B1%7D%7Bn_%7B1%7D%5E%7B2%7D%7D-%5Cfrac%7B1%7D%7Bn_%7B2%7D%5E%7B2%7D%7D%20%29)
where,
= Rydberg constant = ![1.0973731568508 \times 10^{7} per metre](https://tex.z-dn.net/?f=1.0973731568508%20%5Ctimes%2010%5E%7B7%7D%20per%20metre)
= wavelength
and
are the level of transitions.
Now, for
= 2 and
= 6
![\frac{1}{\lambda} = 1.0973731568508 \times 10^{7} \times (\frac{1}{2^{2}}-\frac{1}{6^{2}} )](https://tex.z-dn.net/?f=%5Cfrac%7B1%7D%7B%5Clambda%7D%20%3D%201.0973731568508%20%5Ctimes%2010%5E%7B7%7D%20%5Ctimes%20%28%5Cfrac%7B1%7D%7B2%5E%7B2%7D%7D-%5Cfrac%7B1%7D%7B6%5E%7B2%7D%7D%20%29)
= ![1.0973731568508 \times 10^{7} \times (\frac{1}{4}-\frac{1}{36} )](https://tex.z-dn.net/?f=1.0973731568508%20%5Ctimes%2010%5E%7B7%7D%20%5Ctimes%20%28%5Cfrac%7B1%7D%7B4%7D-%5Cfrac%7B1%7D%7B36%7D%20%29)
= ![1.0973731568508 \times 10^{7} \times (0.25-0.0278 )](https://tex.z-dn.net/?f=1.0973731568508%20%5Ctimes%2010%5E%7B7%7D%20%5Ctimes%20%280.25-0.0278%20%29)
= ![1.0973731568508 \times 10^{7} \times 0.23](https://tex.z-dn.net/?f=1.0973731568508%20%5Ctimes%2010%5E%7B7%7D%20%5Ctimes%200.23)
= ![0.2523958\times 10^{7}](https://tex.z-dn.net/?f=0.2523958%5Ctimes%2010%5E%7B7%7D%20)
![\lambda = \frac{1}{0.2523958\times 10^{7}}](https://tex.z-dn.net/?f=%5Clambda%20%3D%20%5Cfrac%7B1%7D%7B0.2523958%5Ctimes%2010%5E%7B7%7D%7D)
= ![3.9620\times 10^{-7} m](https://tex.z-dn.net/?f=3.9620%5Ctimes%2010%5E%7B-7%7D%20m%20)
= ![396.20\times 10^{-9} m](https://tex.z-dn.net/?f=396.20%5Ctimes%2010%5E%7B-9%7D%20m%20)
= ![396.20 nm](https://tex.z-dn.net/?f=396.20%20nm%20)
Now, for
= 2 and
= 5
![\frac{1}{\lambda} = 1.0973731568508 \times 10^{7} \times (\frac{1}{2^{2}}-\frac{1}{5^{2}} )](https://tex.z-dn.net/?f=%5Cfrac%7B1%7D%7B%5Clambda%7D%20%3D%201.0973731568508%20%5Ctimes%20%2010%5E%7B7%7D%20%5Ctimes%20%28%5Cfrac%7B1%7D%7B2%5E%7B2%7D%7D-%5Cfrac%7B1%7D%7B5%5E%7B2%7D%7D%20%29)
= ![1.0973731568508 \times 10^{7} \times (0.25-0.04 )](https://tex.z-dn.net/?f=1.0973731568508%20%5Ctimes%2010%5E%7B7%7D%20%5Ctimes%20%280.25-0.04%20%29)
= ![1.0973731568508 \times 10^{7} \times (0.21 )](https://tex.z-dn.net/?f=1.0973731568508%20%5Ctimes%2010%5E%7B7%7D%20%5Ctimes%20%280.21%20%29)
= ![0.230 \times 10^{7}](https://tex.z-dn.net/?f=0.230%20%5Ctimes%20%2010%5E%7B7%7D)
![\lambda= \frac{1}{0.230 \times 10^{7}}](https://tex.z-dn.net/?f=%5Clambda%3D%20%5Cfrac%7B1%7D%7B0.230%20%5Ctimes%2010%5E%7B7%7D%7D)
= ![4.3478 \times 10^{-7} m](https://tex.z-dn.net/?f=%204.3478%20%5Ctimes%2010%5E%7B-7%7D%20m%20)
= ![434.78\times 10^{-9} m](https://tex.z-dn.net/?f=434.78%5Ctimes%2010%5E%7B-9%7D%20m%20)
= ![434.78 nm](https://tex.z-dn.net/?f=434.78%20nm%20)
Now, for
= 2 and
= 4
![\frac{1}{\lambda} = 1.0973731568508 \times 10^{7} \times (\frac{1}{2^{2}}-\frac{1}{4^{2}} )](https://tex.z-dn.net/?f=%5Cfrac%7B1%7D%7B%5Clambda%7D%20%3D%201.0973731568508%20%5Ctimes%20%2010%5E%7B7%7D%20%5Ctimes%20%28%5Cfrac%7B1%7D%7B2%5E%7B2%7D%7D-%5Cfrac%7B1%7D%7B4%5E%7B2%7D%7D%20%29)
= ![1.0973731568508 \times 10^{7} \times (0.25-0.0625 )](https://tex.z-dn.net/?f=1.0973731568508%20%5Ctimes%2010%5E%7B7%7D%20%5Ctimes%20%280.25-0.0625%20%29)
= ![1.0973731568508 \times 10^{7} \times (0.1875 )](https://tex.z-dn.net/?f=1.0973731568508%20%5Ctimes%2010%5E%7B7%7D%20%5Ctimes%20%280.1875%20%29)
= ![0.20575 \times 10^{7}](https://tex.z-dn.net/?f=0.20575%20%5Ctimes%2010%5E%7B7%7D)
![\lambda= \frac{1}{0.20575 \times 10^{7}}](https://tex.z-dn.net/?f=%5Clambda%3D%20%5Cfrac%7B1%7D%7B0.20575%20%5Ctimes%2010%5E%7B7%7D%7D)
= ![4.8602 \times 10^{-7} m](https://tex.z-dn.net/?f=4.8602%20%5Ctimes%2010%5E%7B-7%7D%20m%20)
= ![486.02 \times 10^{-9} m](https://tex.z-dn.net/?f=486.02%20%5Ctimes%2010%5E%7B-9%7D%20m%20)
= ![486.02 nm](https://tex.z-dn.net/?f=486.02%20nm%20)
Now, for
= 2 and
= 3
![\frac{1}{\lambda} = 1.0973731568508 \times 10^{7} \times (\frac{1}{2^{2}}-\frac{1}{3^{2}} )](https://tex.z-dn.net/?f=%5Cfrac%7B1%7D%7B%5Clambda%7D%20%3D%201.0973731568508%20%5Ctimes%2010%5E%7B7%7D%20%5Ctimes%20%28%5Cfrac%7B1%7D%7B2%5E%7B2%7D%7D-%5Cfrac%7B1%7D%7B3%5E%7B2%7D%7D%20%29)
= ![1.0973731568508 \times 10^{7} \times (0.25-0.12 )](https://tex.z-dn.net/?f=1.0973731568508%20%5Ctimes%2010%5E%7B7%7D%20%5Ctimes%20%280.25-0.12%20%29)
= ![1.0973731568508 \times 10^{7} \times (0.13 )](https://tex.z-dn.net/?f=1.0973731568508%20%5Ctimes%2010%5E%7B7%7D%20%5Ctimes%20%280.13%20%29)
= ![0.1426585\times 10^{7}](https://tex.z-dn.net/?f=0.1426585%5Ctimes%2010%5E%7B7%7D)
![\lambda= \frac{1}{0.1426585\times 10^{7}}](https://tex.z-dn.net/?f=%5Clambda%3D%20%5Cfrac%7B1%7D%7B0.1426585%5Ctimes%2010%5E%7B7%7D%7D)
= ![7.0097 \times 10^{-7} m](https://tex.z-dn.net/?f=7.0097%20%5Ctimes%2010%5E%7B-7%7D%20m%20)
= ![700.97 \times 10^{-9} m](https://tex.z-dn.net/?f=700.97%20%5Ctimes%2010%5E%7B-9%7D%20m%20)
= ![700.97 nm](https://tex.z-dn.net/?f=700.97%20nm%20)
x21 +ANSWER
(i) Ne-22
(ii)1s2s22p6
(iii)21.3
An element X exists in three forms A, B and C in the ratio 1:2:3. If C has 10 protons and the number of neutrons in A, B and C are 10, 11 and 12 respectively,Give the following:(i) Representation of form C of the element X(ii) Electronic configuration of form B of the element(iii) Calculate the average atomic mass.
(i)C has 10 protons and 12 neutrons so a mass of 10 +12 =22
element 10 is Neon (Ne) so this isotope is Ne-22
(ii) they all have the sane atomic number so the same number of electrons
with an electronic structure of 1s2s22p6
(iii) A weighs 20, B weighs 21, C weighs 22
the ratio is 1:2:3
weighted average weight is therefor
(1X20 +2X21 +3X22)/6 =21.3
Answer:
NH₄Cl ------> NH₃ + HCl
Explanation:
Ammonium Chloride =(NH₄Cl
Ammonia = NH₃
Hydrochloric Acid = HCl
NH₄Cl ------> NH₃ + HCl
In decomposition reaction, the reactant is breaking down into smaller parts. In this case, all of the coefficients are 1. The reaction is already balanced.
Equation is as follow,
<span> 4 Na (s) + O</span>₂ <span>(g) → 2Na</span>₂<span>O (s)
According to equation,
91.92 g (4 moles) of Na produces = 123.92 g (2 moles) of Na</span>₂O
So,
17.4 g of Na will produce = X g of Na₂O
Solving for X,
X = (17.4 g × 123.92 g) ÷ 91.92 g
X = 23.45 g of Na₂O