Answer:
37.5 N Hard
Explanation:
Hook's law: The force applied to an elastic material is directly proportional to the extension provided the elastic limit of the material is not exceeded.
Using the expression for hook's law,
F = ke.............. Equation 1
F = Force of the athlete, k = force constant of the spring, e = extension/compression of the spring.
Given: k = 750 N/m, e = 5.0 cm = 0.05 m
Substitute into equation 1
F = 750(0.05)
F = 37.5 N
Hence the athlete is pushing 37.5 N hard
Answer:
0.167m/s
Explanation:
According to law of conservation of momentum which States that the sum of momentum of bodies before collision is equal to the sum of the bodies after collision. The bodies move with a common velocity after collision.
Given momentum = Maas × velocity.
Momentum of glider A = 1kg×1m/s
Momentum of glider = 1kgm/s
Momentum of glider B = 5kg × 0m/s
The initial velocity of glider B is zero since it is at rest.
Momentum of glider B = 0kgm/s
Momentum of the bodies after collision = (mA+mB)v where;
mA and mB are the masses of the gliders
v is their common velocity after collision.
Momentum = (1+5)v
Momentum after collision = 6v
According to the law of conservation of momentum;
1kgm/s + 0kgm/s = 6v
1 =6v
V =1/6m/s
Their speed after collision will be 0.167m/s
To solve this exercise it is necessary to apply the equations related to the magnetic moment, that is, the amount of force that an image can exert on the electric currents and the torque that a magnetic field exerts on them.
The diple moment associated with an iron bar is given by,

Where,
Dipole momento associated with an Atom
N = Number of atoms
y previously given in the problem and its value is 2.8*10^{-23}J/T


The number of the atoms N, can be calculated as,

Where
Density
Molar Mass
A = Area
L = Length
Avogadro number


Then applying the equation about the dipole moment associated with an iron bar we have,



PART B) With the dipole moment we can now calculate the Torque in the system, which is



<em>Note: The angle generated is perpendicular, so it takes 90 ° for the calculation made.</em>
Answer:
red is not at the bottom. its density is 0.9 not 9!
also I don't need the brainlest thanks
Answer:
Daylight hours would be shorter.
Explanation:
If there were no tilt of the axis at all, every place on the planet except the north and south poles would have 12 hours of daylight and 12 hours of night every day of the year.
At a 10° tilt, the arctic circle and antarctic circles would be a little less than half the distance from the poles as they are today.