S and S²⁻ do not have the outer subshell fully filled with electrons.
Explanation:
We look at electronic configurations:
Ca 1s² 2s² 2p⁶ 3s² 3p⁶ 4s² - the outer subshell 4s² is fully-filled with electrons
S 1s² 2s² 2p⁶ 3s² 3p⁴ - the outer subshell 3p⁴ is not fully-filled with electrons
Zn²⁺ 1s² 2s² 2p⁶ 3s² 3p⁶ 3d¹⁰ 4s⁰ - here the 4s subshell is higher in energy than 3d subshell so will consider 3d¹⁰ the out subshell which is fully-filled with electrons
S²⁻ 1s² 2s² 2p⁶ 3s² 3p² - the outer subshell 3p² is not fully-filled with electrons
Ca²⁺ 1s² 2s² 2p⁶ 3s² 3p⁶ - the outer subshell 3p⁶ is fully-filled with electrons
Learn more about:
electron configurations
brainly.com/question/5524513
brainly.com/question/6991243
#learnwithBrainly
1) Adding salt on the roads in the winter time,
2) Adding salt to the ice bath when making ice cream.
3) Mixing 2 substances when making coolant for a car.
Answer:
Electron cloud
Explanation:
The electron cloud is an informal term in chemistry and physics. This region describes the negatively charged electrons in their orbit surrounding the nucleus in an atom. The nucleus has protons in it that have a positive charge on it. It is not easy to know where exactly an electron in any specific time but the electron cloud helps to know electron is moving in this specific area.
Density=mass/ volume so you solve for volume and get 461.96 mL