1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Dimas [21]
3 years ago
15

If you are heating something, you can step away for a moment, as long as you come back very quickly.

Chemistry
1 answer:
Harlamova29_29 [7]3 years ago
5 0

Answer: b. False

Explanation:

The more energetic molecules move to a gas, spread out, and form bubbles when heating happens. When exposed to heat, many of the chemicals used in the laboratory are volatile and harmful (fire).

So leaving a material that you heat for even a second can be very hazardous and negligent.

You might be interested in
HEEEEeEELP PLEasE! IS SCIENCE
Fynjy0 [20]
Gas and radio waves I’m pretty sure is correct
6 0
2 years ago
What is the most likely reason that nonmetals are electrical insulators
serg [7]
Since valence shells in nonmetal atoms are almost full, the atoms attract electrons and hold them tightly to fill their valence shells.
7 0
3 years ago
Read 2 more answers
We mix 0.08 moles of chloroacetic acid (ClCH2COOH) and 0.04 moles of
Arte-miy333 [17]

Answer:

A. pH using molar concentrations = 2.56

B. pH using activities                      = 2.46

C. pH of mixture                              = 2.56

Explanation:

A. pH using molar concentrations

ClCH₂COOH + H₂O ⇌ ClCH₂COO⁻ + H₃O⁺

        HA        + H₂O ⇌          A⁻         + H₃O⁺

We have a solution of 0.08 mol HA and 0.04 mol A⁻

We can use the Henderson-Hasselbalch equation to calculate the pH.

\begin{array}{rcl}\text{pH} & = & \text{pK}_{\text{a}} + \log \left(\dfrac{[\text{A}^{-}]}{\text{[HA]}}\right )\\\\& = & 2.865 +\log \left(\dfrac{0.04}{0.08}\right )\\\\& = & 2.865 + \log0.50 \\& = &2.865 - 0.30 \\& = & \mathbf{2.56}\\\end{array}

B. pH using activities

(i) Calculate [H⁺]

pH = -log[H⁺]

\text{[H$^{+}$]}  = 10^{-\text{pH}} \text{ mol/L} = 10^{-2.56}\text{ mol/L} = 2.73  \times 10^{-3}\text{ mol/L}

(ii) Calculate the ionic strength of the solution

We have a solution of 0.08 mol·L⁻¹ HA, 0.04 mol·L⁻¹ Na⁺, 0.04 mol·L⁻¹ A⁻, and 0.00273 mol·L⁻¹ H⁺.

The formula for ionic strength is  

I = \dfrac{1}{2} \sum_{i} {c_{i}z_{i}^{2}}\\\\I = \dfrac{1}{2}\left [0.04\times (+1)^{2} + 0.04\times(-1)^{2} +  0.00273\times(+1)^{2}\right]\\\\=  \dfrac{1}{2} (0.04 + 0.04 + 0.00273) = \dfrac{1}{2} \times 0.08273 = 0.041

(iii) Calculate the activity coefficients

\ln \gamma = -0.510z^{2}\sqrt{I} = -0.510(-1)^{2}\sqrt{0.041} = -0.510\times 0.20 = -0.10\\\gamma = 10^{-0.10} = 0.79

(iv) Calculate the initial activity of A⁻

a = γc = 0.79 × 0.04= 0.032

(v) Calculate the pH  

\begin{array}{rcl}\text{pH} & = & \text{pK}_{\text{a}} + \log \left(\dfrac{a_{\text{A}^{-}}}{a_{\text{[HA]}}}\right )\\\\& = & 2.865 +\log \left(\dfrac{0.032}{0.08}\right )\\\\& = & 2.865 + \log0.40 \\& = & 2.865 -0.40\\& = & \mathbf{2.46}\\\end{array}\\

C. Calculate the pH of the mixture

The mixture initially contains 0.08 mol HA, 0.04 mol Na⁺, 0.04 mol A⁻, 0.05 mol HNO₃, and 0.06 mol NaOH.

The HNO₃ will react with the NaOH to form 0.05 mol Na⁺ and 0.05 mol NO₃⁻.

The excess NaOH will react with 0.01 mol HA to form 0.01 mol Na⁺ and 0.01 mol A⁻.

The final solution will contain 0.07 mol HA, 0.10 mol Na⁺, 0.05 mol A⁻, and 0.05 mol NO₃⁻.

(i) Calculate the ionic strength

I = \dfrac{1}{2}\left [0.10\times (+1)^{2} + 0.05 \times(-1)^{2} +  0.05\times(-1)^{2}\right]\\\\=  \dfrac{1}{2} (0.10 + 0.05 + 0.05) = \dfrac{1}{2} \times 0.20 = 0.10

(ii) Calculate the activity coefficients

\ln \gamma = -0.510z^{2}\sqrt{I} = -0.510(-1)^{2}\sqrt{0.10} = -0.510\times 0.32 = -0.16\\\gamma = 10^{-0.16} = 0.69

(iii) Calculate the initial activity of A⁻:

a = γc = 0.69 × 0.05= 0.034

(iv) Calculate the pH

\text{pH} = 2.865 + \log \left(\dfrac{0.034}{0.07}\right ) = 2.865 + \log 0.49 = 2.865 - 0.31 = \mathbf{2.56}

3 0
3 years ago
A student reacts 20.0 mL of 0.248 M H2SO4 with 15.0 mL of 0.195 M NaOH. Write a balanced chemical equation to show this reaction
Molodets [167]

<u>Answer:</u> The concentration of salt (sodium sulfate), sulfuric acid and NaOH in the solution is 0.0418 M, 0.0999 M and 0 M respectively.

<u>Explanation:</u>

To calculate the number of moles for given molarity, we use the equation:

\text{Molarity of the solution}=\frac{\text{Moles of solute}}{\text{Volume of solution (in L)}}     .....(1)

<u>For NaOH:</u>

Initial molarity of NaOH solution = 0.195 M

Volume of solution = 15.0 mL = 0.015 L   (Conversion factor:   1 L = 1000 mL)

Putting values in equation 1, we get:

0.195M=\frac{\text{Moles of NaOH}}{0.015L}\\\\\text{Moles of NaOH}=(0.195mol/L\times 0.015L)=2.925\times 10^{-3}mol

<u>For sulfuric acid:</u>

Initial molarity of sulfuric acid solution = 0.248 M

Volume of solution = 20.0 mL = 0.020 L

Putting values in equation 1, we get:

0.248M=\frac{\text{Moles of }H_2SO_4}{0.020L}\\\\\text{Moles of }H_2SO_4=(0.248mol/L\times 0.020L)=4.96\times 10^{-3}mol

The chemical equation for the reaction of NaOH and sulfuric acid follows:

2NaOH+H_2SO_4\rightarrow Na_2SO_4+2H_2O

By Stoichiometry of the reaction:

2 moles of NaOH reacts with 1 mole of sulfuric acid

So, 2.925\times 10^{-3} moles of KOH will react with = \frac{1}{2}\times 2.925\times 10^{-3}=1.462\times 10^{-3}mol of sulfuric acid

As, given amount of sulfuric acid is more than the required amount. So, it is considered as an excess reagent.

Thus, NaOH is considered as a limiting reagent because it limits the formation of product.

Excess moles of sulfuric acid = (4.96-1.462)\times 10^{-3}=3.498\times 10^{-3}mol

By Stoichiometry of the reaction:

2 moles of KOH produces 1 mole of sodium sulfate

So, 2.925\times 10^{-3} moles of KOH will produce = \frac{1}{2}\times 2.925\times 10^{-3}=1.462\times 10^{-3}mol of sodium sulfate

  • <u>For sodium sulfate:</u>

Moles of sodium sulfate = 1.462\times 10^{-3}moles

Volume of solution = [15.0 + 20.0] = 35.0 mL = 0.035 L

Putting values in equation 1, we get:

\text{Molarity of sodium sulfate}=\frac{1.462\times 10^{-3}}{0.035}=0.0418M

  • <u>For sulfuric acid:</u>

Moles of excess sulfuric acid = 3.498\times 10^{-3}mol

Volume of solution = [15.0 + 20.0] = 35.0 mL = 0.035 L

Putting values in equation 1, we get:

\text{Molarity of sulfuric acid}=\frac{3.498\times 10^{-3}}{0.035}=0.0999M

  • <u>For NaOH:</u>

Moles of NaOH remained = 0 moles

Volume of solution = [15.0 + 20.0] = 35.0 mL = 0.035 L

Putting values in equation 1, we get:

\text{Molarity of NaOH}=\frac{0}{0.050}=0M

Hence, the concentration of salt (sodium sulfate), sulfuric acid and NaOH in the solution is 0.0418 M, 0.0999 M and 0 M respectively.

8 0
3 years ago
Gamma, beta and alpha radiation are all alike because:
timama [110]
Alpha, beta and gamma radiation are all types of radiation that can be emitted from the nucleus of an atom. Apart from this they are different. Alpha radiation consists of a helium nucleus, beta radiation consists of an electron (or positron) and gamma radiation consists of very high energy electromagnetic radiation. 
8 0
3 years ago
Other questions:
  • What is the concentration of a solution prepared by placing 20. mL of 0.12 M K2S in a graduated cylinder and pouring water until
    12·1 answer
  • When 8.5 g of methane (ch4) is burned in a bomb calorimeter (heat capacity = 2.677 × 103 j/°c), the temperature rises from 24.00
    7·2 answers
  • I need help please quick I’m female 15
    9·2 answers
  • The balanced equation for the combustion of Hydrogen is:
    7·1 answer
  • To what does the term 'drying a liquid' refer?
    10·1 answer
  • How can you improve the percent yield of copper in this lab? Check all possible strategies that will help you do so.
    12·2 answers
  • Isotonic, hypertonic and hypotonic cells: describe
    13·1 answer
  • WHERE WOULD YOU MOST LIKELY TO FIND A BOUNDARY BETWEEN A CONTINENTAL AND AN OCEANIC PLATE
    15·1 answer
  • Disintegration is the word geologists use for
    5·2 answers
  • what layers of protection can be used tot detect and respond to abnormal reactions or process conditions
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!