If there is an increase in industrial activity, that means that more heat will be dissipated to the atmosphere in the form of carbon dioxide. Industrialization requires fuel to keep the processes on the go. At the end of the pipeline, the combustion of fuel would result to carbon dioxide released to the atmosphere. That's how it is contributing to the global climate change through the greenhouse effect.
Answer:
1. 276 g of NO₂
2. 34.8 moles of LiO
3. 4.23×10²⁵ molecules of SO₂
4. 540 g of H₂O
5. 224 g CO
Explanation:
Let's define the molar mass of the compound to define the moles or the grans of each.
Molar mass . moles = Mass
Mass (g) / Molar mass = Moles
1. 6 mol . 46 g / 1 mol = 276 g of NO₂
2. 800 g . 1mol / 22.94 g = 34.8 moles of LiO
3. To determine the number of molecules, we convert the mass to moles and then, we use the NA (1 mol contains 6.02×10²³ molecules)
4500 g . 1mol / 64.06 g = 70.2 moles of SO₂
70.2 mol . 6.02×10²³ molecules / 1 mol = 4.23×10²⁵ molecules of SO₂
4. 30 mol . 18g / 1 mol = 540 g of H₂O
5. 8 mol . 28g / 1mol = 224 g CO
N(Ca)/2 = n(O)/1 = n(CaO)/2
The calcium and the Calcium Oxide are divided by 2 because of their coefficients
there is no number in front of the oxygen so it is over one.
Hope this helped!!
Answer:
The correct statement is:
E - The entropy of the products is greater than the entropy of the reactants.
Explanation:
C₆H₁₂O₆ + 6 O₂ → 6 CO₂ + 6 H₂O
As glucose is a large molecule and then it is transformed into many molecules of water and carbon dioxide, the entropy of the system increases. If the number of molecules increases, the disorder increases.
Initial state: 7 molecules (1 glucose + 6 oxygen)
Final state: 12 molecules (6 carbon dioxide + 6 water)