<span>The correct answer should be B) 63.55. That's because the most precise number is 63.546, but you would write 55 because 46 is rounded that way in the equation. The others are a bit higher, while E is a completely different element, Iodine. This isn't the most precise piece of data because in reality there would be a slight differentiation of +- 0,003u</span>
KE = 1/ 2 * 1252 * 144
as KE = 1/2 * m * v ^2
= 90144 J
Answer:
Explanation:
a ) Let let the frictional force needed be F
Work done by frictional force = kinetic energy of car
F x 107 = 1/2 x 1400 x 35²
F = 8014 N
b )
maximum possible static friction
= μ mg
where μ is coefficient of static friction
= .5 x 1400 x 9.8
= 6860 N
c )
work done by friction for μ = .4
= .4 x 1400 x 9.8 x 107
= 587216 J
Initial Kinetic energy
= .5 x 1400 x 35 x 35
= 857500 J
Kinetic energy at the at of collision
= 857500 - 587216
= 270284 J
So , if v be the velocity at the time of collision
1/2 mv² = 270284
v = 19.65 m /s
d ) centripetal force required
= mv₀² / d which will be provided by frictional force
= (1400 x 35 x 35) / 107
= 16028 N
Maximum frictional force possible
= μmg
= .5 x 1400 x 9.8
= 6860 N
So this is not possible.
Answer:
226.2 m/sec
Explanation:
We have given 
The plank's constant 
Mass of electron 
Now according to Heisenberg uncertainty principle 
So
Kinetic energy is the energy for a catapult.