These problems are a bit interesting. :)
First let's write the molecular formula for ammonium carbonate.
NH4CO3 (Note! The 4 and 3 are subscripts, and not coefficients)
17.6 gNH4CO3
Now to convert to mol of one of our substances we take the percent composition of that particular part of the molecule and multiply it by our starting mass. This is what it looks like using dimensional analyse.
17.6 gNH4CO3 * (Molar Mass of NH4 / Molar Mass of NH4CO3)
Grab a periodic table (or look one up) and find the molar masses for these molecules! Well. In this case I'll do it for you. (Note: I round the molar masses off to two decimal places)
NH4 = 14.01 + 4*1.01 = 18.05 g/mol
NH4CO3 = 14.01 + 4*1.01 + 12.01 + 3*16.00 = 78.06 g/mol
17.6 gNH4CO3 * (18.05 molNH4 / 78.06 molNH4CO3)
= 4.07 gNH4
Now just take the molar mass we found to convert that amount into moles!
4.07 gNH4 * (1 molNH4 / 18.05 gNH4) = 0.225 molNH4
<u>Answer:</u> The theoretical yield of the lithium chlorate is 1054.67 grams
<u>Explanation:</u>
To calculate the mass for given number of moles, we use the equation:

Actual moles of lithium chlorate = 9.45 moles
Molar mass of lithium chlorate = 90.4 g/mol
Putting values in above equation, we get:

To calculate the theoretical yield of lithium chlorate, we use the equation:

Actual yield of lithium chlorate = 854.28 g
Percentage yield of lithium chlorate = 81.0 %
Putting values in above equation, we get:

Hence, the theoretical yield of the lithium chlorate is 1054.67 grams
When hydrogen peroxide is broken down the gas released or given off is Oxygen.