<span>B. Hydrogen is electrically neutralized in the solution. Hydrogen is a chemical element with symbol H and atomic number 1. With a standard atomic weight of circa 1.008, hydrogen is the lightest element on the periodic table.</span>
Answer:
Number of boxes = 4
Explanation:
Given:
Mass of one box of jello = 250 grams
Total quantity want to purchase = 1 kg = 1 × 1,000 gram = 1,000 grams
Find:
Number of boxes in 1,000 grams = ?
Computation:
Number of boxes = Total quantity want to purchase / Mass of one box of jello
Number of boxes = 1,000 / 250
Number of boxes = 4
Therefore, 4 boxes of jello must be purchase to get 1 kg of Jello.
<span>C7H8
First, lookup the atomic weight of all involved elements
Atomic weight of carbon = 12.0107
Atomic weight of hydrogen = 1.00794
Atomic weight of oxygen = 15.999
Then calculate the molar masses of CO2 and H2O
Molar mass CO2 = 12.0107 + 2 * 15.999 = 44.0087 g/mol
Molar mass H2O = 2 * 1.00794 + 15.999 = 18.01488 g/mol
Now calculate the number of moles of each product obtained
Note: Not interested in the absolute number of moles, just the relative ratios. So not going to get pedantic about the masses involved being mg and converting them to grams. As long as I'm using the same magnitude units in the same places for the calculations, I'm OK.
moles CO2 = 3.52 / 44.0087 = 0.079984
moles H2O = 0.822 / 18.01488 = 0.045629
Since each CO2 molecule has 1 carbon atom, I can use the same number for the relative moles of carbon. However, since each H2O molecule has 2 hydrogen atoms, I need to double that number to get the relative number of moles for hydrogen.
moles C = 0.079984
moles H = 0.045629 * 2 = 0.091258
So we have a ratio of 0.079984 : 0.091258 for carbon and hydrogen. We need to convert that to a ratio of small integers. First divide both numbers by 0.079984 (selected since it's the smallest), getting
1: 1.140953
The 1 for carbon looks good. But the 1.140953 for hydrogen isn't close to an integer. So let's multiply the ratio by 1, 2, 3, 4, ..., etc and see what each new ratio looks like (Effectively seeing what 1, 2, 3, 4, etc carbons look like)
1 ( 1 : 1.140953) = 1 : 1.140953
2 ( 1 : 1.140953) = 2 : 2.281906
3 ( 1 : 1.140953) = 3 : 3.422859
4 ( 1 : 1.140953) = 4 : 4.563812
5 ( 1 : 1.140953) = 5 : 5.704765
6 ( 1 : 1.140953) = 6 : 6.845718
7 ( 1 : 1.140953) = 7 : 7.986671
8 ( 1 : 1.140953) = 8 : 9.127624
That 7.986671 in row 7 looks extremely close to 8. I doubt I'd get much closer unless I go to extremely high integers. So it looks like the empirical formula for toluene is C7H8</span>
Answer:
Atoms are indivisible
I had a hard time finding this out.
Explanation: Dalton's atomic theory was the first complete attempt to describe all matter in terms of atoms and their properties. Dalton based his theory on the law of conservation of mass and the law of constant composition. The first part of his theory states that all matter is made of atoms, which are indivisible.
<u>Answer:</u> The red litmus paper turns blue on dipping in NaOH solution.
<u>Explanation:</u>
Litmus paper is the indicator that detects the nature of the solution, whether it is acidic or basic.
There are 2 types of litmus paper:
- <u>Red litmus paper:</u> This paper will turn blue if it is dipped in basic solution and will remain as such if it is dipped in acidic solution.
- <u>Blue litmus paper:</u> This paper will turn red if it is dipped in acidic solution and will remain as such if it is dipped in basic solution.
NaOH is a strong base, so when a red litmus paper is dipped in the beaker having necessary amount of NaOH, the red litmus paper turns into blue.