Answer:
v = √2G
/ R
Explanation:
For this problem we use energy conservation, the energy initiated is potential and kinetic and the final energy is only potential (infinite r)
Eo = K + U = ½ m1 v² - G m1 m2 / r1
Ef = - G m1 m2 / r2
When the body is at a distance R> Re, for the furthest point (r2) let's call it Rinf
Eo = Ef
½ m1v² - G m1
/ R = - G m1
/ R
v² = 2G
(1 / R - 1 / Rinf)
If we do Rinf = infinity 1 / Rinf = 0
v = √2G
/ R
Ef = = - G m1 m2 / R
The mechanical energy is conserved
Em = -G m1
/ R
Em = - G m1
/ R
R = int ⇒ Em = 0
A robot character that can transform into a car
Answer:
The total displacement is 102 km
north of east.
Explanation:
We can treat this problem as a trigonometric one, so we need to calculate the total displacement on the north and east.

and

The total displacement is given by:

with an agle of:

Answer:
Option B. Decreases
Explanation:
Coulomb's law states that:
F = Kq₁q₂ / r²
Where:
F => is the force of attraction between two charges
K => is the electrical constant.
q₁ and q₂ => are the two charges
r => is the distance apart.
From the formula:
F = Kq₁q₂ / r²
The force of attraction (F) is inversely proportional to the square of their separating distance (r).
This implies that as the distance between them increase, the force of attraction between the two charges will decrease and as the distance between two charges decrease, the force of attraction between them will increase.
Considering the question given above and the illustration given above, the force of attraction will decrease as their distance of separation increases.
Option B gives the right answer to the question.
It is a very reactive metal with 11 protons ,12 neutrons, 11 electrons, and 1 valence electron