Answer:
View Image
Explanation:
Initialize your variable as a float or double since you're going to be using fractions in your answer.
User scanf() to get user input.
Print out the sum, product, quotient, and difference between the two numbers.
Using the knowledge of computational language in python it is possible to write a code that writes a list and defines the arrange.
<h3>Writing code in python:</h3>
<em>def isSorted(lyst):</em>
<em>if len(lyst) >= 0 and len(lyst) < 2:</em>
<em>return True</em>
<em>else:</em>
<em>for i in range(len(lyst)-1):</em>
<em>if lyst[i] > lyst[i+1]:</em>
<em>return False</em>
<em>return True</em>
<em>def main():</em>
<em>lyst = []</em>
<em>print(isSorted(lyst))</em>
<em>lyst = [1]</em>
<em>print(isSorted(lyst))</em>
<em>lyst = list(range(10))</em>
<em>print(isSorted(lyst))</em>
<em>lyst[9] = 3</em>
<em>print(isSorted(lyst))</em>
<em>main()</em>
See more about python at brainly.com/question/18502436
#SPJ1
Answer:
a. Solid length Ls = 2.6 in
b. Force necessary for deflection Fs = 67.2Ibf
Factor of safety FOS = 2.04
Explanation:
Given details
Oil-tempered wire,
d = 0.2 in,
D = 2 in,
n = 12 coils,
Lo = 5 in
(a) Find the solid length
Ls = d (n + 1)
= 0.2(12 + 1) = 2.6 in Ans
(b) Find the force necessary to deflect the spring to its solid length.
N = n - 2 = 12 - 2 = 10 coils
Take G = 11.2 Mpsi
K = (d^4*G)/(8D^3N)
K = (0.2^4*11.2)/(8*2^3*10) = 28Ibf/in
Fs = k*Ys = k (Lo - Ls )
= 28(5 - 2.6) = 67.2 lbf Ans.
c) Find the factor of safety guarding against yielding when the spring is compressed to its solid length.
For C = D/d = 2/0.2 = 10
Kb = (4C + 2)/(4C - 3)
= (4*10 + 2)/(4*10 - 3) = 1.135
Tau ts = Kb {(8FD)/(Πd^3)}
= 1.135 {(8*67.2*2)/(Π*2^3)}
= 48.56 * 10^6 psi
Let m = 0.187,
A = 147 kpsi.inm^3
Sut = A/d^3 = 147/0.2^3 = 198.6 kpsi
Ssy = 0.50 Sut
= 0.50(198.6) = 99.3 kpsi
FOS = Ssy/ts
= 99.3/48.56 = 2.04 Ans.
Answer:
If analyzed by volume capacity, more trips are needed to fill the space, thus the required trips are 288
Explanation:
a) By volume.
The shrinkage factor is:

The volume at loose is:

If the Herrywampus has a capacity of 30 cubic yard:

b) By weight
The swell factor in terms of percent swell is equal to:


The weight of backfill is:

The Herrywampus has a capacity of 40 ton:

If analyzed by volume capacity, more trips are needed to fill the space, thus the required trips are 288
Answer:
Heat required (q) = 471.19kj/kg
Explanation:
Find attached below solution to problem