The answer is B
because if you compare a regular road and ice... ice is smoother and therefore has less friction
It is most likely true that there was a lower concentration of salt in the water than in the cells because when blood cells are put in a hypotonic solution such as pure water, the little to no salt concentration in the water causes the cells to swell and burst. This would occur because the water would try to dilute the solution inside of the blood cell and which would, therefore, cause it to burst. Hope this helps!
From rest, a rock is dropped from a garage roof. The roof is 6.0 meters above ground level. The rock will reach the earth at a speed of 10.849 meters per second.
<h3>What is velocity?</h3>
The change of displacement with respect to time is defined as the velocity. Velocity is a vector quantity.
it is a time-based component. Velocity at any angle is resolved to get its component of x and y-direction.
Given data:
V(Final velocity)=? (m/sec)
h(height)= 6.0 m
u(Initial velocity)=0 m/sec
g(gravitational acceleration)=9.81 m/s²
Newton's third equation of motion:

Hence, the velocity of the rock as it hits the ground will be 10.849 m/sec.
To learn more about the velocity refer to the link ;
brainly.com/question/862972
#SPJ1
Answer:
Therefore letter <u>C is the correct answer.</u>
Explanation:
In a projectile motion the total time in the air can be calculated using the following equation:
We analyze the y-component motion.

When the final velocity (v(f)) is equal to zero we calculate the upward time and multiplying it by 2 we find the total time in the air. So we will have:


We can see that the <u>total time is directly proportional to the angle</u>, then when <u>θ increase t increase.</u>
Therefore letter C is the correct answer.
I hope it helps you!
Since we know that
Gravitational potential energy = mass × height ×gravity
then
GPE = 1.5 kg x 0.500 m x 9.8m/s^2
therefore
GPE = 7.35 J